Technical Guidance Committee Meeting

Minutes

Thursday, February 4, 2016

Conference Room C
Department of Environmental Quality
1410 North Hilton
Boise, Idaho

TGC ATTENDEES:

Tyler Fortunati, REHS, On-Site Wastewater Coordinator, DEQ
Joe Canning, PE, B&A Engineers
Bob Erickson, REHS, Senior Environmental Health Specialist, SCPHD
Dale Peck, PE, Environmental & Health Protection Division Administrator, PHD
Michael Reno, REHS, Environmental Health Supervisor, CDHD

GUESTS:

Chas Ariss, PE, Wastewater Program Engineering Manager, DEQ
Janelle Larson, Administrative Assistant, DEQ
Ryan Spiers, Alternative Wastewater Systems, LLC
Matt Gibbs, Infiltrator Systems, Inc.
Sheryl Ervin, Bio-Microbics, Inc. (via telephone)
Allen Worst, R.C. Worst & Company, Inc. (via telephone)
Scott Jessick, R.C. Worst & Company, Inc. (via telephone)
Don Prince, Presby Environmental, Inc. (via telephone)
Christina Connor-Cerezo, Presby Environmental, Inc. (via telephone)
Dennis Fogg, Presby Environmental, Inc. (via telephone)
Lee Rashkin, Presby Environmental, Inc. (via telephone)

CALL TO ORDER/ROLL CALL:

Meeting called to order at 8:31 a.m.
Committee members and guests introduced themselves.

OPEN PUBLIC COMMENT PERIOD:

This section of the meeting is open to the public to present information to the TGC that is not on the agenda. The TGC is not taking action on the information presented.

No public comments were submitted during the allotted agenda timeframe.
MEETING MINUTES:

November 5, 2015 Draft TGC Meeting Minutes: Review, Amend, or Approve

No public comment was received on the draft minutes. The minutes were reviewed by the committee. Joe Canning provided a minor grammatical edit.

Motion: Joe Canning moved to approve the minutes as amended.

Second: Bob Erickson.

Voice Vote: Motion carried unanimously.

Minutes will post as final. See DEQ website and Appendix A

OLD BUSINESS/FINAL REVIEW

1.8 Easement

No public comment was received on this section. The committee clarified that the proposed changes were reviewed by DEQ’s Attorney General. Tyler Fortunati stated that the proposed changes were drafted by one of DEQ’s Deputy AGs and had been reviewed.

Motion: Bob Erickson moved that the TGC recommend final approval of Section 1.8 Easement to DEQ.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

Section will post to TGM as final. See DEQ website and Appendix B.

4.22.3.2 Intermittent Filter Dosing

No public comment was received on this section. The committee had no questions or comments.

Motion: Joe Canning moved that the TGC recommend final approval to DEQ for Section 4.22.3.2 Intermittent Filter Dosing.

Second: Dale Peck.

Voice Vote: Motion carried unanimously.

Section will post to TGM as final. See DEQ website and Appendix C.

4.27 Subsurface Flow Constructed Wetland

Tyler Fortunati read public comment received from Allen Worst of R.C. Worst Co. Mr. Worst provided a recap from the November 5, 2015 draft TGC meeting minutes describing information provided by Bob Erickson. The TGC minutes covered Mr. Erickson showing the committee pictures of wetlands that have been installed in Blaine County and stating that the initial plan was that DEQ would provide money to test the effluent from the systems to determine their treatment capability. Mr. Erickson told the
committee that this plan fell apart when the economy turned and the DEQ money was no longer available. Mr. Worst then asked the committee to consider two points that included:

1. Idaho’s trend is to approve technology that has a proven track record in the State. There is no information on the systems installed in Blaine County due to funding issues. Mr. Worst feels it would be inconsistent and irresponsible for the committee to approve increased loading rates and decreased separation distances for systems that do not have a proven track record in Idaho. For consistency Mr. Worst recommended that the committee condition an approval with the requirement that 30 systems must be installed for 3 years with testing to maintain performance validation methods currently required of other technologies.

2. Mr. Worst also stated that based on the May 21, 2015 meeting minutes some committee members expressed desire to implement required O&M on currently approved systems designed to treat or improve the quality of wastewater discharged from them. This includes systems constructed on site. Mr. Worst stated that DEQ has not been supportive of the committee’s request. Based on this Mr. Worst asked the committee to refrain from approving additional technologies until the issues with O&M on complex systems have been addressed by DEQ.

Dale Peck stated that this system would not be considered proprietary or manufactured and is equivalent to a recirculating gravel filter or intermittent sand filter (i.e., individually engineered and constructed on site). Mr. Peck stated that these types of systems are not subject to the same approval policies of proprietary systems or extended treatment package systems and asked Tyler Fortunati to verify this. Tyler Fortunati agreed and stated that the treatment performance of systems that have design guidance and are individually engineered and constructed on site have been based on the extensive research available on them through various universities.

Joe Canning asked for verification that this system would be required to be engineered. Tyler Fortunati stated that they would. Tyler Fortunati also asked the committee if they would be ok with him placing the installer permit and engineering requirements for each alternative system below the alternative system title in section 4 of the TGM. The committee agreed that this is fine to do without their review.

Bob Erickson had questions regarding the placement of geotextile fabric over the top of the wetland system. Mr. Erickson feels that this will inhibit the plants from growing, spreading, and reseeding. This requirement was removed from the system guidance and the committee asked that figure 4-47 be amended accordingly.

Bob Erickson stated that he doesn’t feel this is a proprietary system. Mr. Erickson also added that the systems with design guidance, are individually engineered, and are constructed on site have never been treated them the same as proprietary or manufactured wastewater treatment systems.

Mike Reno asked Allen Worst if he is requesting that an O&M provider be required when the system guidance is approved. Allen Worst stated he did not and that he felt more
systems that necessitated O&M shouldn’t be approved. Mr. Worst feels this is just adding to the O&M problem and that all the treatment systems should be required to undergo O&M. Bob Erickson asked Tyler Fortunati to address the comment by Allen Worst. Tyler Fortunati stated that there is not support from the DEQ administration to add additional systems to a managed O&M program. Tyler Fortunati stated that he didn’t see it as adding to the problem due to the fact that these systems would be installed in a location where another type of treatment system like a sand mound, intermittent sand filter, recirculating gravel filter, or extended treatment package system would be required. Either way one system or another that needs O&M according to Mr. Worst would have to be permitted and installed. The committee agreed that managed O&M and testing shouldn’t be required on these systems at this time.

Motion: Dale Peck moved that the TGC recommend final approval to DEQ for Section 4.27 Subsurface Flow Constructed Wetland as amended.

Second: Bob Erickson.

Voice Vote: Motion carried unanimously.

Section will post to TGM as final. See DEQ website and Appendix D.

NEW BUSINESS/DRAFT REVIEW

2.2.5.2 In-Trench Sand Filters and the Method of 72

Tyler Fortunati provided the committee information that he had received several inquiries into the figure and example provided in this section and its conflict with suitable soils being at the sidewall of the drainfield in conformance with IDAPA 58.01.03.008.02.b. Mr. Fortunati drafted this proposal in response to those inquiries for TGC discussion.

Mike Reno informed the committee that if this change is approved it will cause a large number of systems located in Ada County to be non-conforming due to the issues they have with hardpan and cemented soils in the county. Mr. Reno stated that it is common practice in District 4 to permit systems where they excavate through thick soil layers that would be considered unsuitable to reach suitable soils and backfill with medium sand. Mr. Reno stated that in many cases there is not enough suitable soils in the upper soil profile to get the drainfield sidewalls within suitable soils.

Dale Peck agreed with Mr. Reno and stated that District 1 would have the same issue over the aquifer area due to coarse soils. Tyler Fortunati stated that the in-trench sand filter section of the TGM specifically has an allowance to replace the coarse sands with medium sand so the drainfield is surrounded by suitable soils. Mr. Fortunati stated that the section did not address scenarios described by Mr. Reno and likely needed to.

Tyler Fortunati proposed an amendment to the in-trench sand filter section of the TGM that specifically allows the installation of the drainfield at depths that place the sidewalls in unsuitable soils like cemented soils or hardpan. This would allow section 2.2.5.2 to remain in its current format and document the alternative system allowance as described by Mr. Reno.
Motion: Bob Erickson moved that the TGC table section 2.2.5.2 In-Trench Sand Filters and the Method of 72 and that Tyler Fortunati bring back an amendment to section 4.23 In-Trench Sand Filter allowing installations described by Mike Reno.

Second: Mike Reno.

Voice Vote: Motion carried unanimously.

Action Item: Draft amendment to section 4.23 In-Trench Sand Filter for committee review.

Section will be tabled and new guidance will be drafted. See Appendix E.

2.2.4.2 Reduction in Separation Distance to Surface Water with a Variance

Tyler Fortunati informed the committee that DEQ had the first party attempt to complete the On-Site System Surface Water Separation Distance Determination Guidance and Model to reduce the separation from a drainfield to surface water. Mr. Fortunati stated that the model did not work out for the applicant based on the inability to meet the required site life. Mr. Fortunati also stated that DEQ had further developed the model requirements and evaluation based on this experience. Mr. Fortunati stated that DEQ is proposing to lower the acceptable site life from 100 years to 50 years per drainfield (150 year total site life). This is due to DEQ’s belief that 100 years will be near impossible to attain and that 50 years was adequately protective and still a hard site life to meet. Mr. Fortunati also explained the new direction of requiring an equivalency evaluation is a site can meet the 50 year site life requirement and the associated water body is TMDL limited for phosphorous.

The committee held general discussion on the model.

Dale Peck asked for the evaluation process to be explained. Tyler Fortunati stated that it is done through a variance with the permitting health district and that prior to applying for the variance the applicant would need to successfully complete:

- A site evaluation with the health district
- A nutrient-pathogen evaluation with a maximum TN level of 27 mg/L
- The On-Site System Surface Water Separation Distance Model with a phosphorous discharge of 8.6 mg/L and meet a site life of 50 years and if the water body is TMDL limited for phosphorous the equivalency determination portion of the model comparing the proposed system to a system that would be permitted in the same soils at the rule required separation distance

Mr. Fortunati also stated that if successful the applicant would have to design the system as a pressurized system with a maximum installation depth of 6 inches, have TN treatment to at least 27 mg/L, and have two drainfields installed with reserve area for a third. Tyler Fortunati stated that this will utilize the complete model that was originally developed and meet DEQ’s proposed response to public comment on the model and associated guidance.
Motion: Joe Canning moved that the TGC recommend preliminary approval to DEQ for Section 2.2.4.2 Reduction in Separation Distance to Surface Water with a Variance as proposed.

Second: Mike Reno.

Voice Vote: Motion carried unanimously.

See Appendix F and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

4.19.3.1 Piping

Tyler Fortunati described the proposed changes to the committee. Mr. Fortunati explained that based on input from Joe Canning the minimum disposal area per orifice in sand and gravel filter systems should be calculated on a circular footprint instead of a square footprint to prevent distribution area overlap. Tyler Fortunati agreed with Mr. Canning and thought that a specific distance should be specified to ensure the intent is met. Mr. Fortunati used 2.25 lateral and orifice spacing for this purpose to achieve a circular distribution area of 4 square feet that doesn’t overlap the adjacent orifice disposal areas. The committee asked what Tyler Fortunati was seeing across the state in his permit reviews. Mr. Fortunati stated that there were designs that were all over the place in regards to disposal area per orifice with the largest pushing 16 square feet per orifice within the last year.

Joe Canning asked for clarification as to whether Mr. Fortunati was seeing access risers to sweeping cleanouts extend through the entire mound. Mr. Fortunati stated that he had seen this issue and that he had also seen designs with bleeder holes in the transport piping that allowed the distribution manifold and laterals to drain at the sand-soil interface of the sand mound.

Motion: Bob Erickson moved that the TGC recommend preliminary approval to DEQ for section 4.19.3.1 Piping as proposed.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

See Appendix G and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

9:38 a.m. Break

9:55 a.m. Meeting Resumed

2.1 Soils Texture and Group Determinations

Tyler Fortunati explained to the committee that he was informed by an NRCS soil scientist that DEQ’s guidance on soil textural classification descriptions was not consistent with the NRCS descriptions. Mr. Fortunati had DEQ’s soil scientist Mike
Cook work with his contacts at the NRCS to revise DEQ’s soil texture and group determination guidance to be in conformance with the NRCS standards. Mr. Cook provided the draft amendments that the committee is reviewing today.

The committee recommended a couple revisions to table contents for consistency.

Motion: Joe Canning moved that the TGC recommend preliminary approval to DEQ for section 2.1 Soils Texture and Group Determinations as amended.

Second: Mike Reno.

Voice Vote: Motion carried unanimously.

See Appendix H and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

2.3 Standard Percolation Test

Tyler Fortunati informed the committee that DEQ is proposing to remove the guidance on percolation tests since this is not a standard method to determine soil texture or group determinations in Idaho any longer. Mr. Fortunati stated that it is no longer used in appeals or second opinions throughout the state either. Mr. Fortunati stated that the soil application rates from this section had been moved into the revised table 2-4.

Motion: Mike Reno moved that the TGC recommend preliminary approval to DEQ for section 2.3 Standard Percolation Test as proposed.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

See Appendix I and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

Presby Environmental, Inc. Advanced Enviro-Septic Treatment System and 5.14 Proprietary Wastewater Treatment Products

Tyler Fortunati informed the committee that he had been contacted via email by Christin Connor-Cerezo from Presby Environmental, Inc. (PEI) to inform DEQ that PEI is now only seeking approval for the Advanced Enviro-Septic Treatment System product. PEI is no longer seeking approval of the Enviro-Septic or Simple Septic products. Tyler Fortunati also stated that he received public comment regarding the PEI product submittal for the committee’s consideration and would now read that comment into the meeting record.

The first public comment read was received from Allen Worst of R.C Worst Co. Mr. Worst stated he had concerns regarding the proposed PEI product approval under the Proprietary Product Policy. Those concerns include:

1. Mr. Worst believes that PEI and the committee may be attempting to sidestep the normally required provisional approval, maintenance requirements, and effluent
testing requirements of Idaho’s ETPS program by placing the PEI product under the Proprietary Product Approval section of the TGM.

2. Mr. Worst outlined a statement made by Tyler Fortunati as documented in the August 20, 2015 meeting minutes stating the TGC is capable of requiring a manufactured product submitted for review under the proprietary product policy to undergo the two-level approval process that extended treatment package system would have to go through. Mr. Worst believes that before the PEI products are approved as a Proprietary Product that they should be subjected to the 30 systems and 3 year testing protocol as is required of other technologies and as discussed in the August TGC meeting.

3. Mr. Worst also highlighted a portion of the May 21, 2015 TGC meeting minutes that read the committee discussed their collective concern that all mechanical treatment systems should necessitate managed maintenance, not just the extended treatment package systems. Mr. Worst believes that the committee is going backwards on this.

4. Mr. Worst also wrote that after extensive research and discussion with industry professionals he would like the committee to consider his opinion that the PEI products are basically an elaborate drainfield trench product with sand placed around the exterior and under the chamber device. Although approved under NSF Standard 40 Mr. Worst strongly feels that the same approval could be granted to other trench products if sampling occurred below the trench and beneath enough soil to provide the required reductions. Mr. Worst asked the committee to recognize the deficiencies of NSF 40 for system performance evaluation. Mr. Worst stated that the PEI product should be afforded the same loading rates and separation requirements as any other Idaho approved trench or bed drainfield system.

The second public comment received was from Nicholas Noble of Orenco Systems, Inc. (OSI) Mr. Noble wrote on behalf of Orenco Systems, Inc. with several concerns they identified with the current PEI proposal.

1. Mr. Noble expressed concern that after the wastewater passes through the PEI product there is no understanding of what the wastewater strength is when it is applied to the system sand due to a lack of data on this subject. Mr. Noble stated that due to the unknown waste strength an unknown efficacy of the pipe product it is appropriate to apply sand filter loading rates to the PEI product. Mr. Noble also outlined that there is a second infiltrative surface which should be subject to loading rates established in Idaho regulations (Table 4-21 from the TGM). Mr. Noble outlined that the two infiltrative surfaces that should be regulated on par with other systems that use sand or media as the primary treatment mechanism. Mr. Noble stated that he had provided sections of Washington and Colorado regulations or guidance that supported his assertions and that he also attached a research paper from Dr. Tyler regarding wastewater application rates to soils. Mr. Noble believes that the initial infiltrative surface should be calculated utilizing locally accepted loading rates for septic tank effluent to coarse sand. Mr. Noble also stated that the PEI system is a single-pass sand filter with no way to adjust, service, or inspect the system.
2. Mr. Noble stated that it is DEQ’s role to protect environmental health which is in part accomplished by setting effluent quality limits for wastewater treatment systems. Mr. Noble questions how DEQ intends to ensure that the PEI systems are meeting effluent limits. Mr. Noble also questions that if a pan sampler is used how will DEQ know that the effluent in the pan is not subject to dilution from rain, snowmelt, or groundwater.

3. Mr. Noble states that anyone with some experience in the wastewater treatment industry understands that systems in the real world are subject to peak flows, high strength waste, leaking toilets, and significant FOG. This isn’t experienced in NSF bench tests. Mr. Noble states that these conditions will have deleterious effects on system performance. Mr. Noble states that the difference between most systems that experience these conditions and the PEI products is that nearly all the other systems can be adjusted, monitored, and accessed to correct potential problems. Mr. Noble states that with the PEI system no one would know if a problem was occurring until it was too late, after which little could be done and may result in the premature failure of the soil.

4. Mr. Noble also states that it is disturbing that with the approval of the PEI system that DEQ intends to allow the property owner to do their own O&M. Mr. Noble takes this allowance seriously and believes that all NSF 40 systems need to be held to the same standards in the field. Mr. Noble believes that if DEQ is going to allow property owners to do their own maintenance that they would consider this a restriction of trade by creating unfair market conditions. Mr. Noble states that OSI requests that all NSF 40 systems be held to the same standards.

Mike Reno asked if there was treatment documentation of effluent from the PEI pipe and not after the sand. Dennis Fogg stated that the PEI system had not been tested with less than 6 inches of sand below and around the piping.

Dale Peck asked what the proposed separation distance is for the PEI system. Tyler Fortunati stated that it is proposed to be the same as the recirculating gravel filter, intermittent sand filter, or an extended treatment package system. Don Prince stated that the minimum size for the PEI system is 2 bedrooms.

Mike Reno stated that the PEI system is a lot like an intermittent sand filter but it has less sand. The PEI system is proposed with 6 inches of sand where the intermittent sand filter has 24 inches of sand. Mike Reno stated there is no historical data on the PEI system though. Don Prince stated that the PEI system is tested in Canada in the field. Don Prince stated that PEI preferred the NSF 40 results be used through as this standard had been tested on all three of their products spanning a period of 3 years.

Joe Canning asked how the PEI system was tested in the field. Don Prince stated that they install a large tray that captures effluent below the system and directs the effluent to a sump. Joe Canning asked if the sump was continually full. Don Prince stated that is was but directed effluent back to the treatment system after a certain volume was reached.
Mike Reno stated that he believes the system needs to be tested on par with the TGM protocols. Mr. Reno does not see how the treatment could not be occurring in the sand portion of the system. Don Prince stated that PEI would take issue with the view that treatment was only occurring in the sand portion of the system. Mr. Prince stated that you cannot separate the pipe and the sand independently as they are all part of the system. Separation would be on par with separating treatment of each membrane in a multiple membrane system which isn’t done within the industry. Mike Reno stated that he had an issue with blanket acceptance of NSF 40 data and stated that past acceptance has created issues for the State in other treatment system programs.

Dale Peck asked if there were other states with historical testing data over some period of duration. Don Prince stated that there was data in Canada but not in any states. Mr. Prince stated that Canada requires testing as a condition of the PEI approval up there. Mr. Prince stated that the PEI system had also undergone the secondary and tertiary BNQ testing in Canada as well. Mr. Prince asked for an explanation of testing for other systems. Tyler Fortunati described how NSF 40 testing is used in Idaho’s ETPS program and the continual testing of ETPSs that has been performed in the state. Tyler Fortunati stated that DEQ and the TGC would like to review the field testing data from Canada and the BNQ results. Mr. Fortunati stated that the committee would consider this outside data on a case-by-case basis but could not guarantee it would be sufficient. The PEI representatives agreed to provide the BNQ secondary and tertiary testing information along with annual field results to DEQ.

Joe Canning asked how the testing pan worked. PEI representatives stated that the pan was placed under the first few feet of the system. They stated during NSF testing that it was found that over half of the system wasn’t utilized due to the wastewater distribution throughout the system. PEI didn’t feel it was necessary to install the pan further down the piping. The committee held a general discussion on biomat buildup and breakdown within the system to ensure that effluent was able to be collected.

Tyler Fortunati asked the committee if they felt they had covered Mr. Worst’s public comment concerns. The committee responded that they did not feel that the system is mechanical in nature and don’t feel that managed maintenance is necessary based on the design. Tyler Fortunati and the committee agreed that testing of the PEI system can be discussed further after the BNQ and Canada field testing data are submitted for review.

Tyler Fortunati asked if the committee felt they had covered Mr. Noble’s public comment concerns. The committee stated that they felt the PEI system only needed to be considered as one interface based on the system design. The interface used will be the sand-native soil interface. The committee felt this is sufficient based on PEI’s design and often will require more PEI piping than what would be required under the standard PEI design. The committee agreed that the monitoring and testing concerns will be discussed further once they can review the BNQ and Canada field testing data from PEI.

Mike Reno asked PEI for clarification as to the depth of system sand used in the BNQ testing. PEI representatives stated that they used 12 and 24 inches in the BNQ testing.
The committee moved on to discuss the draft design manual provided by PEI. Tyler Fortunati stated that there were only a few items that he saw warranted committee discussion including the pipe length requirements and storage capacity. Mr. Fortunati outlined that the proposal submitted by PEI includes two different sizing requirements, one for residential (30 ft/bedroom), and one for non-residential (3 GPD/ft). Mr. Fortunati stated that based on this proposal the residential sizing would be short in one- and two-bedroom scenarios and would then be oversized starting at three-bedrooms in comparison to PEI’s standard sizing of 3 GPD/ft. PEI representatives stated that the minimum sizing requirement for their system should be two-bedrooms and that they do not install systems sized for one-bedroom. The committee accepted this approach and requested that the draft manual include the written requirement that the minimum system size for residential structures be two-bedrooms and a minimum non-residential sizing of 200 GPD.

Tyler Fortunati asked the committee if they were concerned about the PEI product’s storage capacity. Mr. Fortunati stated that the product has a capacity of 5.8 gallons/ft and that a standard drainrock system holds 3.9 gallons/foot when excavated 3 feet wide. The committee was not concerned with the storage capacity based on the maximum pipe spacing of 6 feet.

The committee asked the PEI representatives to address the requests made during today’s discussion and come back to the next meeting with the information. Tyler Fortunati stated that he would follow-up with PEI and provide a breakdown of the committee and DEQ’s requests. PEI agreed to do so.

Motion: Dale Peck moved that the TGC table section 5.14 Proprietary Wastewater Treatment Products.

Second: Bob Erickson.

Voice Vote: Motion carried unanimously.

Section will be tabled for further discussion and review. See Appendix J.

4.21 Recirculating Gravel Filter

Tyler Fortunati presented a revision to the recirculating gravel filter system design that met the requests from the committee at the November meeting addressing nitrogen reducing designs and non-nitrogen reducing designs.

The committee requested changes to the nitrogen reduction being at 27 mg/L instead of less than 27 mg/L and that the monitoring portion of the mandatory maintenance statement be removed.

Dale Peck requested that additional information be added to the guidance that outlines what occurs when a system isn’t operated or maintained correctly and that activity isn’t documented and submitted by a service provider. Tyler Fortunati stated that he envisioned making the amendment to coincide with changes to the ETPS program as well. Mr. Fortunati stated that he would address this issue for review at the next meeting.
Action Item: Add additional guidance regarding actions or process to follow when the system is not operated, maintained, or reported on by a service provider for review at the next meeting.

Motion: Dale Peck moved that the TGC recommend preliminary approval to DEQ for section 4.21 Recirculating Gravel Filter as amended.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

See Appendix K and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

4.5 Drip Distribution

Tyler Fortunati stated that at the last meeting the committee requested that he provide a research summary on the use of primary septic tank effluent in a drip distribution system. Tyler Fortunati stated that he had summarized several studies on the subject which was included in appendix J of the meeting agenda. Mr. Fortunati stated that he would not be reading the summary at this meeting but it was available for everyone’s review in the agenda. Mr. Fortunati stated that based on the studies and design guidance he reviewed, and based on discussions with industry professionals and review of drip manufacturer literature he saw no reason not to allow the use of primary septic tank effluent in drip distribution systems. Mr. Fortunati stated that the draft amendments before the committee today were based on his research and review of studies and various design guidance for this allowance. Mr. Fortunati also stated that he had received written public comment on this guidance which he would read for the committee.

The first written comment received was from Ryan Spiers of Alternative Wastewater, Inc. Mr. Spiers outlined a few issues that he saw with the existing drip guidance and would like built into the guidance:

1. The construction notes read as if all the piping is supposed to drain back to the tanks. Mr. Spiers believes that the only line recommended to drain back to the tanks is the backflush line from the hydraulic unit between the zone solenoids and check valves. Mr. Spiers states that mains and uprights sit below frost line and everything else drains back into the tubing. When pressure is cut to the system emitters open allowing everything to drain from the air release valves back to the tank.

2. Mr. Spiers states that there are a couple different ways to build manifolds. On sloped sites Mr. Spiers uses top feed manifolds that are above and parallel to tubing so they can evenly drain into the tubing without overloading lower tubes. On flat sites Mr. Spiers uses side feed manifolds that are perpendicular to laterals and slightly elevated that drain back into tubes.

The second public comment was received from Tom Ashton with American Manufacturing Company, Inc. Mr. Ashton’s comments were limited to section 4.5.3.2 of the proposed drip guidance and include the following:

1. The filter size should range from 100-115 microns.
2. Item 3 allows for application areas up to 1 square foot per linear foot of drip distribution line and a line spacing of 1 foot may be used. Mr. Ashton states that drip systems are typically sized on a footprint basis with the minimum tubing required being the total area divided by two. This infers a two-foot center separation between tubing runs.

3. Mr. Ashton states that more tubing is always more desirable but believes that designers should have the flexibility to design with more tubing within the area to accommodate a simpler field network configuration. Mr. Ashton feels that it is important that designers consider a site’s soil texture and structure and the topographic installability of an individual site. Mr. Ashton does not believe that drip tubing can be installed closer than 1.5 feet on center with a vibratory plow or trencher regardless of the site.

4. Mr. Ashton feels that sites with very high loading rates often require close tubing spacing to provide an adequate amount of tubing to keep pump run time and daily instantaneous loadings down. Typically this is done in very sandy soils or certain at grade/mound applications.

5. Tubing separations greater than 2 feet on center may be indicated in several situations. On steep slopes this is necessary for the machine to traverse the site. The important part is ensuring the minimum amount of tubing is installed.

6. Mr. Ashton states that the recommendation should be to install more tubing in an area when the soils are clayey.

7. Mr. Ashton believes that the 2 foot emitter spacing and 2 foot separation on contour is a good standard but designers should be able to design the drip network with a higher orifice density as soil and site conditions allow.

8. Mr. Ashton stated that at a minimum two independently back washed disk filters need to be required to be automatically flushed at each dosing cycle and the tubing network needs to be flushed every 20-50 dosing cycles or roughly once every one or two weeks with a minimum fluid velocity of 2 feet per second designed at the distal end of the lateral connection. All filter and tubing flushing should be returned to the head of the treatment train.

Allen Worst of R.C. Worst Co. provided the committee with verbal comments on the drip distribution proposal including:

1. 4.5.1(3) – Recommend only requiring a filter on systems without secondary treatment. Filters are showing little accumulation in the field.
2. 4.5.1(7) – Pressure regulators for non-pressure compensating emitters only, not required on systems using pressure compensating emitters.
3. 4.5.3.1(1) – This is extra hydraulic loading on the septic tank and is a bad idea. They have always run return flow from secondary and primary effluent systems with no ill effects (1,000 gallon tanks typical).
4. 4.5.3.1(3) – Completely draining drip tubing from the emitters is a physical impossibility due to emitter orientation and typical tubing installation grade line variability. Spot freezing and plugging can occur in cold weather. Drip systems designed to properly drain back in cold climates are recommended to slightly slope to the manifolds.
5. **4.5.3.1(3a)** – Requiring two zones defeats the purpose of continual flush systems. Consistent coverage is ensured through hydraulic modeling and pressure compensating emitters. Zone valves are problematic and prone to freezing. We have invented and patented a method of drip distribution to avoid the hassles of multiple zone systems.

6. **4.5.3.1(3b)** – Lateral lengths do not need to be equal if hydraulic modeling insures minimum flushing velocity.

7. **4.5.3.1(3c)** – Zones do not need to be equal in size to achieve efficient and consistent application of wastewater as long as this is taken into consideration during design and dosing settings are appropriate there is no reason zones can’t be of different size.

8. **4.5.3.1(3d)** – The point of continuous flush systems is to provide consistent coverage and assure rapid drain back to the dose tank eliminating bottom loading issues. These recommendations create potential freeze issues.

9. **4.5.3.1(5)** – This requirement should only apply to standard septic tank effluent. This is not necessary after secondary systems.

10. **4.5.3.1(7)** – Recommend that the requirement is for pressure regulators or pressure compensating emitters.

11. **4.5.3.1(9)** – Pressure compensating emitters balance emitter flow rates in variable pressure systems.

12. **4.5.3.3** – According to the provided research and our own field observations there is no need for this filter in secondary treated systems.

13. **4.5.3.5(1)** – Filter should only be required for septic tank effluent. Using non-flushing disk filters with an alarm in place we have experienced zero alarms and inspections indicated little to no accumulation. Annual cleaning is sufficient.

14. **4.5.3.5(4 & 5)** – There shouldn’t be a requirement to drain effluent from the system back to the septic tank. The only time this would make sense is for septic tank effluent systems. This may limit the system’s ability to drain back effectively.

Allen Worst stated that the info provided by Tyler Fortunati recommends operation and maintenance be performed on the system two times per year. Mr. Worst stated that he personally supports requiring maintenance on the system.

Dale Peck stated that they need operation and maintenance on the standard septic tank effluent system for it to operate correctly and it is something that should be required.

The committee asked Tyler Fortunati to change the drip tube spacing on the septic tank effluent system but to retain the same sizing requirements for the system. The committee also requested that the filter requirement be removed from secondary effluent. The committee requested that Tyler Fortunati address the items presented in public comment and from the committee. A new draft of this guidance was requested to be completed for preliminary review at the next meeting.

Action Item: Address public comment and committee provided revisions.
Motion: Joe Canning moved that the TGC table section 4.5 Drip Distribution System.

Second: Bob Erickson.

Voice Vote: Motion carried unanimously.

Section will be tabled for further revision and review. See Appendix L.

NEXT MEETING:
The next committee meeting is scheduled to be on May 18, 2016 at the Idaho Department of Environmental Quality’s state office.

Motion: Bob Erickson moved to adjourn the meeting.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

The meeting adjourned at 1:05 p.m.

TGC Parking Lot.
This is a running list of issues requested to be prepared and presented at a future TGC meeting.

- Obtain Presby Environmental, Inc.’s secondary and tertiary BQN reports and summary of testing data in Canada and provide for TGC review.
- Add installer license and engineering requirements in TGM header for each alternative system.
- Revise in-trench sand filter guidance to specifically allow drainfield sidewalls in unsuitable soils.
- Add additional information for failure to meet operation, maintenance, and reporting requirements for recirculating gravel filters.
- Address public comments and committee input on drip distribution guidance.

List of Appendices from the February 4, 2016 Meeting

Appendix A:
November 5, 2015 Draft TGC Meeting Minutes
Status: Final

Appendix B:
1.8 Easement
Status: Final

Appendix C:
4.22.3.2 Intermittent Filter Dosing
Status: Final
Appendix D:
4.27 Subsurface Flow Constructed Wetland
Status: Final

Appendix E:
2.2.5.2 In-Trench Sand Filters and the Method of 72
Status: Tabled

Appendix F:
2.2.4.2 Reduction in Separation Distance to Surface Water with a Variance
Status: Preliminary

Appendix G:
4.19.3.1 Piping
Status: Preliminary

Appendix H:
2.1 Soils Texture and Group Determinations
Status: Preliminary

Appendix I:
2.3 Standard Percolation Test
Status: Preliminary

Appendix J:
Presby Environmental, Inc. Advanced Enviro-Septic Treatment System and 5.14 Proprietary Wastewater Treatment Systems
Status: Tabled

Appendix K:
4.21 Recirculating Gravel Filter
Status: Preliminary

Appendix L:
4.5 Drip Distribution System
Status: Tabled
Appendix A

Technical Guidance Committee Meeting

Draft Minutes

Thursday, November 5, 2015

Conference Room C
Department of Environmental Quality
1410 North Hilton
Boise, Idaho

TGC ATTENDEES:

Tyler Fortunati, REHS, On-Site Wastewater Coordinator, DEQ
Joe Canning, PE, B&A Engineers
Bob Erickson, REHS, Senior Environmental Health Specialist, SCPHD
Dale Peck, PE, Environmental & Health Protection Division Administrator, PHD
Michael Reno, REHS, Environmental Health Supervisor, CDHD
Jason Holm, J.T. Holm Construction, LLC

GUESTS:

Chas Ariss, PE, Wastewater Program Engineering Manager, DEQ
Tammarra Golightly, Administrative Assistant, DEQ
Ryan Spiers, Alternative Wastewater Systems, LLC
Allen Worst, R.C. Worst & Company, Inc.
PaRee Godsill, Northern Services, Inc.
Kellye Eager, REHS, Environmental Health Direction, EIPH
Don Belk, Presby Environmental, Inc. (via telephone)
Christina Connor-Cerezo, Presby Environmental, Inc. (via telephone)

CALL TO ORDER/ROLL CALL:

Meeting called to order at 8:30 a.m.
Committee members and guests introduced themselves.

OPEN PUBLIC COMMENT PERIOD:

This section of the meeting is open to the public to present information to the TGC that is not on
the agenda. The TGC is not taking action on the information presented.

No public comments were submitted during the allotted agenda timeframe.
MEETING MINUTES:

July 22, 2015 Draft TGC Meeting Minutes: Review, Amend, or Approve

No public comment was received on the draft minutes. The minutes were reviewed by the committee. Dale Peck had questions regarding the timeframe to implement the general and provisional ETPS approvals. Tyler Fortunati clarified that the general and provisional approval classifications would begin July 1, 2016.

Motion: Bob Erickson moved to approve the minutes.

Second: Mike Reno.

Voice Vote: Motion carried unanimously.

Minutes will post as final. See DEQ website and Appendix A

August 20, 2015 Draft TGC Meeting Minutes: Review, Amend, or Approve

No public comment was received on the draft minutes. The minutes were reviewed by the committee and no suggestions for amendments were made.

Motion: Dale Peck moved to approve the minutes.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

Minutes will post as final. See DEQ website and Appendix B

OLD BUSINESS/FINAL REVIEW

1.8 Easement

This TGM Section was posted for public comment. Tyler Fortunati read the only public comment received by DEQ to the committee regarding the interchangeable references to parcel, lot, and property. The public comment requested that the guidance use a single definition of property throughout the document.

Tyler Fortunati informed the committee that the new changes presented in the document were developed by DEQ’s Deputy Attorney General to address the public comment received on the easement guidance. Bob Erickson stated that he felt the changes were extensive enough that he felt the document should undergo another round of public comment prior to being finalized by the committee.

Motion: Bob Erickson moved that the TGC recommend to DEQ that Section 1.8 Easement undergo another public comment period as presented.

Second: Mike Reno.

Voice Vote: Motion carried unanimously.
See Appendix C and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

1.4.2.2 Extended Treatment Package System Approvals

This TGM Section was posted for public comment. There were no public comments received on this section.

Mike Reno inquired about DEQ’s change in the BioMicrobics BioBarrier classification change from the general level the committee proposed back to provisional. Tyler Fortunati stated this change was presented to the committee as DEQ had discovered that there are only seven BioBarrier systems installed in the state at this time and that there are roughly 30 total data points obtained on these installations, several of which were obtained on a monthly basis after installation. Tyler Fortunati stated this was far less than the 30 systems for 3 years, or equivalent 90 data points described in the policy. Mike Reno stated that he felt this was equivalent to going back on a product approval that was provided to a manufacturer who has not had an issue with any of their systems remaining in compliance with Idaho’s operation, maintenance, and monitoring requirements. Mike Reno stated that if the product approval went through as provisional the testing costs would change to the manufacturer which was not how the system was originally approved and felt this was an approval switch mid-course. Tyler Fortunati stated that DEQ felt the change was warranted as it followed the developed policy and its minimum data collection requirements. Mike Reno disagreed and stated that changing the manufacturer’s approval of a functioning system that has not had any compliance issues was not warranted. Bob Erickson stated that he would like all systems to be treated the same. Joe Canning and Dale Peck agreed with Bob Erickson and Mike Reno. The committee discussed what equal treatment of existing approvals would mean.

The committee stated that they would like to see all of the manufacturer approvals for ETPS units that do not have a recent or historic issue of compliance with DEQ’s mandated operation, maintenance, and monitoring requirements to be provided general approval. The committee would like existing manufacturer approvals for ETPS that are not installed in the state or that have a recent or historic issue of compliance with DEQ’s mandated operation, maintenance, and monitoring requirements to be provided provisional approval. All new ETPS approvals moving forward would be subject to the ETPS approval policy as presented today.

Bob Erickson provided a few revisions due to grammar issues.

Motion: Dale Peck moved that the TGC recommend final approval to DEQ for Section 1.4.2.2 Extended Treatment Package System Approvals as revised.

Second: Jason Holm.

Voice Vote: Motion carried unanimously.
DEQ Decision: DEQ rejects the recommendation to provide general approval to the BioMicrobics BioBarrier. BioMicrobics will need to obtain the minimum 90 data points meeting the minimum performance criteria for the product prior to the BioBarrier product being moved to the general ETPS approval category. All other recommendations related to this section were approved.

Section will post to TGM as final. See DEQ website and Appendix D.

5.4 Extended Treatment Package Systems

This TGM Section was posted for public comment. There were no public comments received on this section.

Mike Reno stated that he would like to see the BioMicrobics BioBarrier product moved from the provisional category to the general category. Tyler Fortunati polled the committee and they were all in agreement with this change. Tyler Fortunati changed the BioBarrier product to general approval.

Bob Erickson questioned Ryan Spiers as to whether his company was mainly installing BioBarriers at this time. Ryan Spiers stated due to cost that the majority of BioMicrobics systems being installed are the MicroFast units.

Motion: Dale Peck moved that the TGC recommend final approval to DEQ for Section 5.4 Extended Treatment Package Systems as amended and with the understanding that the approval classifications of provisional and general does not occur until July 1, 2016.

Second: Mike Reno.

Voice Vote: Motion carried unanimously.

Section will post to TGM as final. See DEQ website and Appendix E.

5.13 Total Nitrogen Reduction Approvals

This TGM Section was posted for public comment. There were no public comments received on this section.

Tyler Fortunati presented the sand mound research data on the mound’s ability to reduce total nitrogen as requested by the committee at the August meeting. Based on the information obtained Tyler Fortunati stated that he didn’t see the need or the justification for adding the sand mound to the total nitrogen reduction approval list. They agreed with Tyler Fortunati’s assessment.

The committee discussed whether there was a need to keep any systems not capable of obtaining total nitrogen reduction ≤ 27 mg/L on the total nitrogen approval list. Joe Canning stated that he thinks DEQ and the health districts will begin to see total nitrogen levels greater than 27 mg/L used in nutrient-pathogen evaluations by the consultants and developers based on the changes that the committee has been making in the subsurface
program. Based on Joe Canning’s input the committee decided to leave the product listings in the total nitrogen reduction approval list as is.

Motion: Bob Erickson moved that the TGC recommend final approval to DEQ for Section 5.13 Total Nitrogen Reduction Approvals as presented.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

Section will post to TGM as final. See DEQ website and Appendix F.

1.4.2.4 Proprietary Product Approval Policy

This TGM Section was posted for public comment. There were no public comments received on this section.

Tyler Fortunati stated that based on statements and information provided to him by the committee since the last meeting that he would like the committee to provide any lingering statements or hold any remaining discussion they felt needs to be held on this policy prior to any motions being made.

Mike Reno stated that he would like to see annual maintenance be required for all ETPS units. Mike Reno believes that the Orenco AdvanTex units need annual maintenance regardless of what the committee would like to classify them as. Mike Reno read a statement from the manufacturer developed operation and maintenance manual supporting his claim that annual operation and maintenance is necessary for the Orenco AdvanTex product. Mike Reno stated that in the proposal to the committee made by Allen Worst he provided three recommendations to meet his concerns. Mike Reno felt that a compromise on this is to require annual operation and maintenance on all recirculating gravel filters required to obtain a total nitrogen reduction level of 27 mg/L as required through a nutrient-pathogen evaluation. Mike Reno stated that he does not want to go back on the existing recirculating gravel filters that are installed under these requirements but that annual operation and maintenance should be required on all newly installed recirculating gravel filters required to obtain a total nitrogen reduction level of 27 mg/L as required through a nutrient-pathogen evaluation. Bob Erickson stated that he agreed with Mike Reno but thought it was clear where DEQ was willing to go on this issue. Joe Canning stated that he had concerns regarding impacts to the environment if there is no operation and maintenance requirement on the mechanical treatment systems.

Mike Reno stated that he feels if there is a total nitrogen requirement on a particular installation that environmental damage could occur if annual maintenance was not performed or required on that system. Mike Reno stated he wants to see required operation and maintenance on recirculating gravel filters required to achieve 27 mg/L total nitrogen and does not feel that this should be a problem with the service provider system being developed by DEQ. Joe Canning agreed with Mike Reno.
The committee held general discussion on how the system classifications and policies should change so that the proprietary wastewater treatment products did not overlap with the extended treatment package system approvals. Tyler Fortunati thought he could address this with some minor changes to the existing policy.

Joe Canning stated that part of the proposal provided by Allen Worst was to provide a level playing field between the engineered systems allowed through TGM guidance and his manufactured product. Joe Canning stated that as a member of the Technical Guidance Committee he wasn’t concerned with a level playing field, his main concern is protection of the environment. Joe Canning also stated that he doesn’t believe the current policy would level the playing field as is. Allen Worst disagreed with Joe Canning and stated that a property owner perceives both types of systems the same coming in but that they shy away from the ones that have state mandated operation, maintenance, and monitoring once they understand the requirements.

9:54 a.m. Break
10:15 a.m. Meeting Resumed

Tyler Fortunati presented the minor changes he made to the proposed policy at the request of the committee during the break. The change as proposed would allow the committee to review incoming products seeking approval as a proprietary wastewater treatment product on a case-by-case basis to determine if they fit the committee’s perception of a proprietary product or another alternative system classification.

Motion: Bob Erickson moved that the TGC recommend final approval to DEQ for Section 1.4.2.4 Proprietary Wastewater Treatment Product Approval Policy as amended.
Second: Dale Peck.

Voice Vote: Motion carried unanimously.

Section will post to TGM as final. See DEQ website and Appendix G.

5.14 Proprietary Wastewater Treatment Products

This TGM Section was posted for public comment. There were no public comments received on this section.

Dale Peck and Mike Reno held a general discussion on how to move forward with this section based on the discussion held for the last guidance section reviewed and the committee’s desired direction. Dale Peck stated he felt the table could move forward as presented if the committee simply removed the Orenco AdvanTex product from the table, thus removing their approval of this product as a proprietary wastewater treatment product. Tyler Fortunati stated that he would like to obtain a motion on removing the product to record the committee’s official position.
Motion: Mike Reno moved that the TGC recommend removal of the Orenco AdvanTex product from the Proprietary Wastewater Treatment Product listing and additionally recommend that all newly permitted recirculating gravel filters required to achieve a total nitrogen reduction limit of 27 mg/L as part of a nutrient-pathogen evaluation be required to perform annual operation and maintenance upon implementation of the service provider model and the health districts will begin to write recirculating gravel filter permits impacted by this recommendation with these requirements to be effective July 1, 2017.

Second: Bob Erickson.

Voice Vote: Motion carried unanimously.

DEQ Decision: DEQ approves the recommendations made by the committee.

Tyler Fortunati removed the Orenco AdvanTex product from the Proprietary Wastewater Treatment Product list as requested by the committee.

Motion: Dale Peck moved that the TGC recommend final approval of Section 5.14 Proprietary Wastewater Treatment Products.

Second: Mike Reno.

Voice Vote: Motion carried unanimously.

Section will post to TGM as final. See DEQ webpage and Appendix H.

NEW BUSINESS/DRAFT REVIEW

Proposal for Drip Distribution Guidance Amendment

Tyler Fortunati read a proposal submitted by Ryan Spiers for the committee’s consideration. Mr. Spiers requests that the committee consider allowing drip distribution systems to be installed without the requirement for pre-treatment of the effluent by an extended treatment package system, recirculating gravel filter, or intermittent sand filter if site conditions would warrant the installation. Tyler Fortunati stated that based on a couple conferences he had attended drip distribution without pre-treatment was being allowed in different parts of the United States. Tyler Fortunati stated that there should be current research regarding this issue available for review. Tyler Fortunati also stated that due to pressurization requirements with or without pretreatment he didn’t see the professional engineer requirement to change. Tyler Fortunati stated that he would like to obtain the committee’s recommendation to research these types of changes prior to drafting any guidance.

The committee held general discussion on their current knowledge and desire to pursue information on drip distribution systems without pre-treatment. The committee agreed that they would like to see current research information on this proposal.
Action Item: Provide the committee with a summary of current research on drip distribution systems that do not require pre-treatment as part of the system’s design.

See Appendix I.

Update on DEQ Service Provider Rule

Tyler Fortunati provided the committee an update on the current status of DEQ’s rulemaking efforts related to a service provider based operation, maintenance, and monitoring system. Tyler Fortunati informed the committee that a negotiated rulemaking session was held on October 22, 2015 and that a public comment period was open through November 6, 2015. Tyler Fortunati informed the committee about the proposed rulemaking schedule and that the implementation date of the rule if successful would be July 1, 2017. Tyler Fortunati informed the committee that they could obtain updates on the rulemaking from the TGM webpage or directly from the negotiated rulemaking webpage for Docket No. 58-0103-1501 at http://www.deq.idaho.gov/laws-rules-etc/deq-rulemakings/docket-no-58-0103-1501/.

4.22.3.3 Intermittent Filter Dosing

Tyler Fortunati explained that the filter dosing rate for intermittent sand filters needed to be adjusted from 4% of the daily design flow to 5% so that the pump could keep up with the system’s wastewater demand.

Motion: Joe Canning moved that the TGC recommend preliminary approval to DEQ for section 4.22.3.3 Intermittent Filter Dosing as proposed.

Second: Jason Holm.

Voice Vote: Motion carried unanimously.

See Appendix J and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

4.21 Recirculating Gravel Filter

Tyler Fortunati presented a revision to the recirculating gravel filter system design that required effluent return from the filter to an equalization tank that also receives clarified effluent from a septic tank as requested by the committee at the July meeting. A new flow splitting device was also added to the design guidance.

Joe Canning had questions on the flow splitting and effluent return. Tyler Fortunati stated that the ratios included in the guidance were based on the requirements used by other states and EPA design guidance. Tyler Fortunati also stated that the flow splitting for effluent return was to be determined by the design engineer.

Dale Peck inquired as to what the benefit of the effluent return to a recirculation tank was. Tyler Fortunati stated that it is used in design guidance and other state requirements...
to achieve better nitrogen reduction based on the additional mixing of aerobic effluent and anaerobic effluent in the equalization tank which aids in the nitrification/denitrification cycle. Dale Peck requested that there be two design options for the recirculating gravel filter that include a design with, and without the effluent return to an equalization tank. The design option without the equalization tank can be used for all recirculating gravel filter designs that don’t require total nitrogen reduction and are used for ground water or soil conditions. The design option with the equalization tank should be required for all recirculating gravel filters that are required to obtain total nitrogen reduction. The committee agreed with Dale.

Action Item: Amend guidance to allow two different recirculating gravel filter design options, one with and one without an equalization tank and additional effluent return, based on the system’s treatment needs.

Motion: Mike Reno moved to table Section 4.21 Recirculating Gravel Filter and to bring back the guidance with the committee’s recommended changes at the next meeting.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

See Appendix K.

4.27 Subsurface Flow Constructed Wetland

Bob Erickson showed the committee pictures of subsurface flow wetlands that were installed in Blaine County around 2007/2008. Bob Erickson stated that the initial plan was that the systems would be installed and that DEQ would be providing money to test the effluent from the systems to determine their treatment capability but the testing plan fell apart when the economy turned and government money was no longer available. Bob Erickson stated the systems are still installed and functioning today.

The committee inquired about the design guidance that DEQ was presenting and where the requirements came from. Tyler Fortunati stated the draft guidance was developed based on EPA guidance and guidance from other states that is currently in place. Dale Peck inquired as to whether the systems would function in cold weather and if precipitation would impact them. Tyler Fortunati stated that the design guidance from other states came from Ohio, Iowa, and Indiana and the systems functioned year-round there. Bob Erickson also stated that the article he provided to DEQ to begin the conversation on submerged wetlands came from installations in Colorado that were installed at elevations of 9,000+ feet and those systems were also functioning. Tyler Fortunati also stated that based on the footprint and retention time of the system precipitation should not be an issue.

Action Item: Move the arrow in Figure 4-46 identifying the liner location.

Motion: Mike Reno moved that the TGC recommend preliminary approval to DEQ for section 4.27 Subsurface Flow Constructed Wetland as proposed.
Second: Joe Canning.

Voice Vote: Motion carried unanimously.

See Appendix L and provide public comment to Tyler Fortunati at 208-373-0140 or by email at tyler.fortunati@deq.idaho.gov.

11:45 a.m. Lunch

1:26 p.m. Meeting Resumed

Committee Review of the Presby Environmental, Inc. Advanced Enviro-Septic Treatment System

Tyler Fortunati discussed with the committee that several documents were submitted by Presby Environmental, Inc. in support of their Advanced Enviro-Septic Treatment System. Tyler Fortunati stated that the most relevant document provided by Presby was the Idaho Design and Installation Manual that they developed which will be specific to their product in Idaho and contain all the information on sizing and installation requirements that they are proposing. The design manual applies to their advanced enviro-septic, enviro-septic, and simple-septic products.

Tyler Fortunati reviewed several issues with the committee and Presby representatives that he saw in the design manual that conflicted with Idaho’s subsurface rules or other alternative system design allowances. The committee questioned why the three different products would warrant the same installation allowances in regards to separation distances and sizing. Christina Connor-Cerezo stated that NSF Standard 40 was passed using the simple-septic product and through engineering review the NSF Standard 40 approval was provided to the other two products as well due to the increase in treatment area provided by the other two products. Christina Connor-Cerezo stated that New Hampshire was the only state requiring different separation distances to their three products. Tyler Fortunati stated he would contact New Hampshire to discuss why they have these requirements and their experience with the product.

Mike Reno stated that he wants to see the system sized similar to the intermittent sand filter and recirculating gravel filter for drainfield application rates. The committee agreed that the sand footprint of the Presby system would need to meet the total disposal area required based on the design flow and increased application rates allowed for the intermittent sand filter and recirculating gravel filter. The committee also stated that based on the issues with the Idaho Design and Installation Manual brought up by Tyler Fortunati and the committee that they did not feel approval was possible at this time. Tyler Fortunati stated that he would draft a revision letter for Presby Environmental, Inc. to address and request the resubmit the manual for the committee’s review.

Motion: Joe Canning moved that the committee table the Presby Environmental, Inc. product review and that DEQ provide Presby Environmental, Inc. the necessary revisions to the Idaho Design and Installation Manual.
Second: Mike Reno.

Voice Vote: Motion carried unanimously.

NEXT MEETING:
The next committee meeting is scheduled to be on February 4, 2016 at the Idaho Department of Environmental Quality’s state office.

Motion: Mike Reno moved to adjourn the meeting.

Second: Joe Canning.

Voice Vote: Motion carried unanimously.

The meeting adjourned at 3:06 p.m.
Appendix B

1.8 Easement

Revision: March 20, February 4, 2016

The “Individual/Subsurface Sewage Disposal Rules” (IDAPA 58.01.03) provide that every owner of real property is responsible for storing, treating, and disposing of wastewater generated on that property. This responsibility includes obtaining necessary permits and approvals for installing an individual or subsurface sewage disposal system. Often the storage, treatment and disposal of wastewater remain solely on the real property from which it was generated. However, sometimes other real property is needed for the storage, treatment or disposal of that wastewater. When that is the case, an easement is required as part of the permit application. The real property from which the wastewater is generated is known as the dominant estate because it is entitled to the benefit of the easement. The other real property needed for storage, treatment or disposal is known as the servient estate. The servient estate is the real property subject to the easement. Therefore, a real property owner wishing to install an individual or subsurface sewage disposal system must obtain a permit under IDAPA 58.01.03 and any other necessary approval for installing the system, including any authorization needed to install the system on another real property that does not contain the wastewater-generating structure. The owner of the dominant estate may also own the servient estate, or the servient estate may be owned by another individual. This property may be owned by the same individual who owns the parcel with the wastewater-generating structure or another individual. Consistent with this requirement, IDAPA 58.01.03.005.04.1 requires a permit applicant to include in the application copies of legal documents relating to access to the system.

This section provides guidance regarding the circumstances under which the health district should permit a system when there is both a dominant estate and a servient estate to be located on another property that does not contain the wastewater-generating structure and the legal documents that must be included in or with an application for such a system.

1. The health district will consider allowing an owner to install a subsurface sewage disposal system on another property the installation of a subsurface sewage disposal system on another property (e.g., lot or parcel). However, this option should be considered a last resort for use only when other practical solutions for subsurface sewage disposal are not available on the applicant’s property where the wastewater is generated. In addition, the entire site (i.e., the area for both the primary and replacement drainfield) on the other servient estate property must be reviewed by the health district, and the site must meet all requirements of IDAPA 58.01.03.

2. The placement of an individual subsurface sewage disposal system on another other property requires that an easement be in place before subsurface sewage disposal permit issuance. Easements are required anytime a subsurface sewage disposal system is proposed on another property regardless of property ownership. With one exception, easements must be obtained for each any real property, other than the wastewater-generating parcel that the application is submitted for, that upon which any portion of the subsurface sewage disposal system is proposed to be installed upon. Easements are not necessary for any portion of the system located on the wastewater-generating parcel.
dominant estate that for which the application is submitted for. It is the applicant’s responsibility to include an easement that is prepared by an attorney and:

a. Contains a sufficient description of the easement area and of the dominant estate property to be benefited by the easement (the real property of the applicant where wastewater is generated).

b. Contains language ensuring that the other property servient estate can be used for the system, and that the applicant or a subsequent purchaser of the applicant’s property dominant estate has access to make repairs or perform routine maintenance until the system is abandoned. The language must ensure such use and access even when the applicant’s property or the other property dominant or servient estate is sold or otherwise transferred.

c. Contains language that restricts the use of the easement area in a manner that may have an adverse effect on the system functioning properly.

d. Is surveyed, including monumenting the corners of the entire easement area, to supply an accurate legal description of the easement area for both the primary and replacement drainfield areas and enable the health district to properly evaluate the site. The survey and monumenting of the easement area must be performed by an Idaho licensed professional land surveyor.

3. The applicant is responsible for ensuring that a legally sufficient document is prepared to establish the necessary easement for the subsurface sewage disposal system located on another property. The applicant must submit the easement to the health district with the permit application. This document must be submitted to the health district with the permit application. The health district must ensure that an easement document is included in the application. However, the health district does not have the expertise, nor is it the duty of the health district, to determine the legal adequacy of the easement document, and the issuance of a permit does not in any way represent or warrant that an easement has been properly created. To issue a permit that includes a system on another property servient estate, the health district must ensure that it evaluates whether the easement document included with the application:

a. Has been prepared by an attorney.

b. Includes a survey that was prepared and monumented by an Idaho licensed professional land surveyor.

b. Has been recorded in the county with jurisdiction. Evidence that the document has been recorded must be provided to the health district.

If the easement document meets the two criteria described in 3.a-3.c above, the health district may issue a permit. It is not the health district’s responsibility to ensure the easement document meets the requirements in item 2 above. The applicant and the applicant’s attorney are responsible for ensuring that the easement is legally sufficient and will meet the requirements in item 2 above.

Easement Restrictions

1. If easements for drainfields under separate ownership result in more than 2,500 GPD of effluent being disposed of on the same property, the drainfields must be designed as a large soil absorption system and undergo a nutrient-pathogen (NP) evaluation.
2. Easement boundaries that are not adjacent to the permit applicant’s/grantee’s dominant estate’s property line must meet the separation distance of 5 feet between the drainfield and/or septic tank and the easement boundary.
Appendix C

4.22.3.2 Intermittent Filter Dosing

1. Timed dosing is required, and the filter dosing cycle should meet the following minimum recommendations:
 a. Pumps are set to dose each cell once per hour.
 b. Dose volume delivered to the filter surface for each cycle should be 45% of the daily design flow.
 c. A pump on override float should be set at a point that equates to 70% of the dosing chamber’s volume.
 d. A high-level audio and visual alarm float should be set at 90% of the dosing chamber’s volume.
 e. A low-level off float should be placed to ensure that the pump remains fully submerged at all times.

2. The pump controls should meet the following:
 a. Be capable of monitoring low- and high-level events so that timer settings can be adjusted accordingly.
 b. Have event counters and run-time meters to be able to monitor daily flows.
Appendix D

* This system will be added to the engineered list in section 4.1.

4.27 Subsurface Flow Constructed Wetland

Revision: February 4, 2016

4.27.1 Description

Subsurface flow constructed wetlands are secondary wastewater treatment systems that receive and treat wastewater that has undergone primary treatment in a septic tank. Wastewater flows through a lined constructed wetland cell filled with porous media in which climate and anaerobic, water-tolerant vegetation is planted. The vegetation provides up-take of the wastewater in addition to a surface for microorganisms to grow that aid in wastewater treatment. Wastewater exits the horizontal constructed wetland cell and proceeds to a watertight overflow basin which then either discharges to another constructed wetland cell in series with the first or to a subsurface sewage disposal drainfield. Figure 4-46 provides a diagram of a subsurface flow constructed wetland.

![Diagram of subsurface flow constructed wetland](image)

Figure 4-46. Cross-sectional view of a subsurface flow constructed wetland.

4.27.2 Approval Conditions

1. The system must be designed by a PE licensed in Idaho.
2. Wastewater must remain below the ground surface in the constructed wetland.
3. Nondomestic wastewater must be pretreated to residential strength before discharge to the constructed wetland.
4. Effluent shall not discharge to the drainfield without passing through the constructed wetland first.
5. The bottom of the constructed wetland must not come within 12 inches of seasonal high ground water.
6. The constructed wetland shall meet the same separation distance requirements as a septic tank.
7. The design engineer shall provide an O&M manual for the system to the health district before permit issuance.
8. All pressure distribution components shall be designed according to the pressure distribution system guidance (section 4.19).

4.27.3 Design Requirements

Minimum design requirements for the subsurface flow constructed wetland are provided below.
4.27.3.1 Septic Tank
1. The septic tank shall be sized according to the requirements of IDAPA 58.01.03.007.07.
2. The septic tank shall have an approved effluent filter (section 5.9) installed at the outlet.
3. The outlet manhole shall be brought to grade utilizing a riser and secured lid to provide maintenance access to the effluent filter.

4.27.3.2 Effluent Transport to the Subsurface Flow Constructed Wetland
1. Gravity flow is the preferred method to transport wastewater from the septic tank to the subsurface flow constructed wetland.
2. If gravity flow is not possible a dosing chamber may be installed meeting the requirements of section 4.19.3.4 and the effluent shall break to gravity following the requirements of section 4.19.3.6 prior to entering the subsurface flow constructed wetland.
3. If the installation of a pump to gravity distribution component is necessary the drop box shall be accessible from grade for maintenance purposes.
4. Pressurized doses should have a small volume so the subsurface flow constructed wetland does not receive large surge flows.

4.27.3.3 Subsurface Flow Constructed Wetland
1. The subsurface flow constructed wetland container shall be constructed of reinforced concrete or other materials where equivalent function, workmanship, watertightness, and at least a 20-year service life can be documented, or
2. The subsurface flow constructed wetland container shall be constructed of a flexible membrane liner meeting the following requirements:
 a. Have properties equivalent to or greater than 30-mil PVC and be compatible with wastewater.
 b. Have field repair instructions and materials provided to the purchaser of the liner.
 c. Have factory fabricated boots for waterproof field bonding of piping to the liner.
 d. Liner must be placed against smooth, regular surfaces free of sharp edges, nails, wire, splinters, or other objects that may puncture the liner. A 4-inch layer of clean sand should provide liner protection.
3. The subsurface flow constructed wetland shall have a berm that is at least 1 foot above the surface of the planting media with sides that are as steep as possible, consistent with the soils, construction methods and materials.
4. Filter construction media shall meet the following specifications:
 a. Section 3.2.8.1.3 for planting media (pea gravel)
 b. Section 3.2.8.1.1 for inlet and outlet zone media (drainrock)
 c. Treatment zone media shall have an average diameter between 3/4 inch to 1 inch and be free of fines.
5. The surface of the subsurface flow constructed wetland shall be level.

6. The bottom of the subsurface flow constructed wetland shall maintain a uniform slope from the inlet to the outlet of 1/2% to 1% to maintain flow conditions and allow for complete drainage.

7. Minimum filter construction specifications shall also meet the dimensions, ratios, and locations depicted in Figure 4-47.

8. The inlet and outlet zones should be designed to prevent accidental contact with effluent from the surface. Chain-link fence or another acceptable protective barrier shall be placed below the construction media at the top of the inlet/outlet zones and cover the entire surface of the inlet and outlet areas to prevent access, unless fencing is placed around the entire system to prevent access.

Figure 4-47. Cross sectional view of a constructed wetland cell.

4.27.3.4 Subsurface Flow Constructed Wetland Sizing

Sizing of a subsurface flow constructed wetland must take into account the loading of BOD and TSS from the wastewater. In addition the treatment zone of the subsurface flow constructed wetland should be capable of maintaining a hydraulic retention time of at least 2 days. Use Table 4-31 with the information provided in this subsection to size the wetland correctly.

1. Determine the minimum treatment zone surface area for both pollutants (BOD and TSS) and utilize the largest area.
 (a) BOD surface area: \(A_{SB} = \frac{Q(B)}{53.5 \text{ lb/acre/day}} \)
 (b) TSS surface area: \(A_{ST} = \frac{Q(T)}{44.5 \text{ lb/acre/day}} \)
Equation 4-17. BOD and TSS surface area in square feet.

Where:

\[A_{SB} \text{ and } A_{ST} = \text{total surface area of the treatment zone in square feet (ft}^2\text{) for BOD (}A_{SB}\text{) and TSS (}A_{ST}\text{).} \]

\[Q = \text{total daily design flow in gallons per day (gal/day).} \]

\[B = 0.0018 \text{ lb/gal (constant value for the maximum BOD discharged to the system per gallon).} \]

\[T = 0.00071 \text{ lb/gal (constant value for the maximum TSS discharged to the system per gallon).} \]

Example:

\[A_{SB} = (250 \text{ GPD})(0.0018 \text{ lb/gal})/(53.5 \text{ lb/acre/day}) = 0.0084 \text{ acres} \]

\[(0.0084 \text{ acres})(43560 \text{ ft}^2/\text{acre}) = 366 \text{ ft}^2 \]

\[A_{ST} = (250 \text{ GPD})(0.00071 \text{ lb/gal})/(44.5 \text{ lb/acre/day}) = 0.004 \text{ acres} \]

\[(0.004 \text{ acres})(43560 \text{ ft}^2/\text{acre}) = 175 \text{ ft}^2 \]

Use \[A_{SB} = 366 \text{ ft}^2 \]

2. Apply a 25% safety factor to the required size of the treatment zone.

Example:

\[(366 \text{ ft}^2)(1.25) = 458 \text{ ft}^2 \]

3. Determine the size of the initial treatment zone and final treatment zone within the total treatment zone using the following requirements:

a. Initial treatment zone = 30% of the overall treatment zone area

Example:

\[A_{IT} = 0.3(458 \text{ ft}^2) = 138 \text{ ft}^2 \]

b. Final treatment zone = 70% of the overall treatment zone area

Example:

\[A_{FT} = 0.7(458 \text{ ft}^2) = 321 \text{ ft}^2 \]

4. The hydraulic conductivity (K) of clean treatment zone media meeting the sizing requirements in section 4.XX.3.3(4) is 30,500 ft/day. Due to filtration and settling of materials the hydraulic conductivity of the treatment zone is:

a. Initial treatment zone is 1% of the clean K, or 305 ft/day.

b. Final treatment zone is 10% of clean K, or 3,050 ft/day.

5. Determine the minimum width based on the hydraulic loading rates that will maintain all flow below the surface of the submerged flow constructed wetland using Darcy’s Law. The largest width should be used for the overall system design.

\[Q = KWD_w(d_w/L) \]
Equation 4-18 Darcy’s Law

Where:

\[L = \text{length of treatment zone} = \text{area/width}; \text{therefore:} \]

\[W^2 = \frac{QA_{zi}}{(KD_w d_h)} \]

Where:

\(A_{zi} = \text{Surface area of the treatment zone (ft}^2) \)

\(D_w = \text{Depth of water (ft)} \)

\(W = \text{Width of cell (ft)} \)

\(Q = \text{Flow into cell (ft}^3/\text{day}) (1 \text{ ft}^3 = 7.48052 \text{ gal}) \)

\(K = \text{Hydraulic conductivity (ft/day)} \)

\(d_h = \text{Maximum permissible headloss (ft) (assume = 50% of difference between depth of media and depth of water)} \)

Example:

Initial Treatment Zone = \(W^2 = \frac{(33.42)(458 \text{ ft}^2)}{(305 \text{ ft/day})(1.33 \text{ ft})(0.167 \text{ ft})} \)

\[= \frac{15306.36 \text{ ft}^2}{67.74 \text{ ft}} = 226 \text{ ft} \]

\[\rightarrow (\sqrt{226}) = 15 \text{ ft} \]

Final Treatment Zone = \(W^2 = \frac{(33.42)(458 \text{ ft}^2)}{(3050 \text{ ft/day})(1.33 \text{ ft})(0.167 \text{ ft})} \)

\[= \frac{15306.36 \text{ ft}^2}{677.4 \text{ ft}} = 22.6 \text{ ft} \]

\[\rightarrow (\sqrt{22.6}) = 4.8 \text{ ft} \]

Use 15 ft. for both treatment zone widths.

6. Determine the maximum length of each treatment zone by dividing the required treatment area by the width.

\[L_{IT} = \frac{(0.3A_T)}{W} \]

Equation 4-19. Initial Treatment Zone Length

Where:

\(L_{IT} = \text{Total length of the initial treatment zone} \)

\(A_T = \text{Total required treatment area} \)

\(W = \text{Width (determined in step 5)} \)

\(0.3 = \text{Constant described in step 3} \)

Example:

\[L_{IT} = \frac{(0.3)(458 \text{ ft}^2)}{(15 \text{ ft})} = 9.2 \text{ ft}; \rightarrow \text{use 10 ft.} \]

\[L_{FT} = \frac{(0.7A_T)}{W} \]

Equation 4-20. Final Treatment Zone Length

Where:

\(L_{FT} = \text{Total length of the final treatment zone} \)

\(A_T = \text{Total required treatment area} \)
W = Width (determined in step 5)

0.7 = Constant described in step 3

Example:

\[L_{IT} = \frac{(0.7)(458 \text{ ft}^2)}{(15 \text{ ft})} = 21.4 \text{ ft.} \rightarrow \text{ use 22 ft.} \]

7. Verify that the total treatment zone has a hydraulic retention time of at least 2 days assuming a porosity of the treatment media of 30% and that the length to width ratio of the submerged flow constructed wetland (inlet zone, total treatment zone, and outlet zone) is 3:1 or less. If the hydraulic retention time and/or the length to width ratio of the system do not meet the requirements above adjust the system dimensions to meet the requirements while maintaining the minimum treatment area and minimum width required.

\[\text{HRT} = \left(L_{TZ} W_{TZ} (1.33)(0.3) \right)/Q \]

Equation 4-21. Hydraulic Retention Time

Where:

- **HRT** = Hydraulic retention time
- **L_{TZ}** = Length of the total treatment zone
- **W_{TZ}** = Width of the treatment zone
- 1.33 = Depth of the water level within the submerged flow constructed wetland at normal operating level
- 0.3 = Porosity of the treatment zone media
- 7.48052 = Gallons per cubic foot
- **Q** = Total daily design flow

Example:

\[\text{HRT} = \left((41 \text{ ft})(15 \text{ ft})(1.33 \text{ ft})(0.3)(7.48052 \text{ gal/ft}^3) \right)/(250 \text{ GPD}) = (1835.6 \text{ gal})/(250 \text{ GPD}) = 7.34 \text{ days} \]

\[\text{L:W} = (L_{TZ}+L_{IZ}+L_{OZ})/W_{TZ} \]

Equation 4-22. Length to Width Ratio of the Subsurface Flow Constructed Wetland

Where:

- **L:W** = Length to width ratio
- **L_{TZ}** = Length of the treatment zone
- **L_{IZ}** = Length of the inlet zone
- **L_{OZ}** = Length of the outlet zone
- **W_{TZ}** = Width of the treatment zone

Example:

\[\text{L:W} = (32 \text{ ft}+6 \text{ ft}+3 \text{ ft})/15 \text{ ft} = 41 \text{ ft}/15 \text{ ft} = 2.73/1 \]
<table>
<thead>
<tr>
<th>Table 4-31. Subsurface flow constructed wetland sizing checklist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Zone Surface Area</td>
</tr>
<tr>
<td>1. Determine daily design flow (Q) (Q = _________ GPD)</td>
</tr>
</tbody>
</table>
| 2. **Determine the treatment zone surface area based on BOD and TSS**
 \(A_{SB} = [(Q)(0.0018 lb/gal)]/(53.5 lb/acre/day); and \)
 \(A_{ST} = [(Q)(0.00071 lb/gal)]/(44.5 lb/acre/day) \)
 Convert acreage to square feet and add safety factor using
 \([(\text{Acres})(43560 ft^2/acre)(1.25)] = ft^2 \)
 \(A_{SB} = _________ ft^2 \)
 \(A_{ST} = _________ ft^2 \)
 Use largest value (A) |

<table>
<thead>
<tr>
<th>Initial Treatment Zone and Final Treatment Zone</th>
</tr>
</thead>
</table>
| 3. **Determine the size of the initial treatment zone**
 \(A_{IT} = 0.3 (A) \)
 Initial Treatment Zone = _________ ft^2 (B) |
| 4. **Determine the size of the final treatment zone**
 \(A_{FT} = 0.7 (A) \)
 Final Treatment Zone = _________ ft^2 (C) |

<table>
<thead>
<tr>
<th>Determine the minimum width of the treatment zones</th>
</tr>
</thead>
</table>
| 5. **Determine the minimum width of the treatment zones**
 \(W^2 = (QA_{SB})/(KD_{w}d_{h}) \)
 Round up to nearest foot
 Initial Treatment Zone Width = _________ ft
 Final Treatment Zone Width = _________ ft
 Use largest value (D) |

<table>
<thead>
<tr>
<th>Determine the maximum length of the initial treatment zone</th>
</tr>
</thead>
</table>
| 6. **Determine the maximum length of the initial treatment zone**
 \(L_{IT} = (B)/(D) \)
 Round up to nearest foot
 Maximum Length of the Initial Treatment Zone Length = _________ ft (E) |

<table>
<thead>
<tr>
<th>Determine the maximum length of the final treatment zone</th>
</tr>
</thead>
</table>
| 7. **Determine the maximum length of the final treatment zone**
 \(L_{FT} = (C)/(D) \)
 Round up to nearest foot
 Maximum Length of the Final Treatment Zone Length = _________ ft (F) |

<table>
<thead>
<tr>
<th>Retention Time</th>
</tr>
</thead>
</table>
| 8. **Verify the total treatment zone has a hydraulic retention time of at least 2 days**
 \(HRT = (L_{TZ}W_{TZ}(1.33)(0.3))/Q \)
 Hydraulic Retention Time = _________ days |

<table>
<thead>
<tr>
<th>Length to Width Ratio</th>
</tr>
</thead>
</table>
| 9. **Verify that the length to width ratio of the wetland is 3:1 or less**
 \(L:W = ((E+F)+L_{IT}+L_{OT})/D \)
 Length to Width Ratio = _________ |

Notes: gallons per day (GPD); pounds per gallon (lb/gal); pounds per acre per day (lb/acre/day); square feet per acre (ft^2/acre); square feet (ft^2); feet (ft)
4.27.3.5 Subsurface Flow Constructed Wetland Cells

1. Subsurface flow constructed wetlands may be divided into multiple cells in series to maintain length to width ratios (Figure 4.48).

2. Subsurface flow wetlands shall be divided into multiple parallel trains that contain one or more cells as described in Table 4-31.

3. For wetlands with daily design flows of 2,500 gallons per day or more piping shall be included in the design that allows each cell to be taken off line and bypassed for maintenance and repair needs.

4. Daily flows must be divided equally among each train.

5. Each subsurface flow constructed wetland cell shall contain its own watertight overflow basin described in section 4.27.3.6.

![Series Serpentine Flow](image1)

![Parallel Flow](image2)

Figure 4-48. Configuration of wetland cells in series and parallel.

Table 4-31. Required subsurface flow constructed wetland trains and cells based on daily design flow.

<table>
<thead>
<tr>
<th>Daily Design Flow (GPD)</th>
<th>Minimum Number of Trains</th>
<th>Minimum Number of Cells per Train</th>
<th>Minimum Number of Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2,500</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2,500-4,999</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>≥5,000</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Note: GPD – gallons per day

4.27.3.6 Inlet and Outlet Structures in the Subsurface Flow Constructed Wetland

1. The inlet control structure should uniformly distribute the inflow across the entire width of the constructed wetland (Figure 4.49).

2. The inlet and outlet piping and control structures shall have a minimum diameter of 4 inches.
3. The inlet and outlet control structures shall have cleanouts that are accessible from grade.

4. The inlet control structure shall be located at the top of the drainrock in the inlet zone, be located as close to the inlet wall of the wetland as possible, and be level across its entire length.

5. Orifices on the inlet and outlet control structures should be evenly spaced with a maximum distance between orifices equal to 10% of the wetland width.

6. The outlet control structure should uniformly collect wastewater effluent across the entire width of the wetland.

7. The outlet control structure shall be located at the bottom of the drainrock in the outlet zone, be located as close to the outlet wall of the wetland as possible, and be level across its entire length.

8. The outlet control structure shall discharge to a watertight overflow basin located outside of the constructed wetland.

9. The watertight overflow basin (Figure 4.50) shall:
 a. Have a minimum diameter of 20 inches and be accessible from grade.
 b. Contain a water level control device that allow the operator to flood the constructed wetland to a point that is level with the surface of the planting media, completely drain the constructed wetland, and maintain the water level within the constructed wetland anywhere in between these two points and maintain a 2 day hydraulic retention time. Note: Normal operating level is located 4 inches below the surface of the treatment media.
 c. Gravity flow to the drainfield. If gravity flow is not achievable and/or pressurization of the drainfield or transport piping is necessary then the watertight basin must be an approved dosing chamber or septic tank that meets the requirements of section 4.19.3.4.
Figure 4.49. Overhead view of a wetland showing the inlet and outlet control structures in relation to the wetland width.

Figure 4.50. Cross-sectional view of an overflow basin.
4.27.3.7 Subsurface Flow Constructed Wetlands Vegetation

1. Planting densities shall be 1 ft. to 2 ft. on center in staggered rows throughout the treatment zone of the wetland (Figure 4.51).

2. Vegetation should not be established within the inlet and outlet zones of the wetland.

3. Vegetation shall not be established from seed.

4. Plant species should:
 a. Be capable of producing root depths that will extend to the bottom of the wetland (20 in.)
 b. Be tolerant of local climates and continuous submersion of their roots in anaerobic water
 c. Not be considered noxious or invasive plants
 d. Not be flowering or soft tissue plants that decompose rapidly
 e. Not be emergent woody plants or riparian trees and shrubs
 f. Not be submerged or floating aquatic plants
 g. Recommended species include, but are not limited to:
 i. Alkali bulrush (*Schoenoplectus maritimus*)
 ii. Baltic rush (*Juncus balticus*)
 iii. Broadleaf cattail (*Typha latifolia*)
 iv. Creeping spikerush (*Eleocharis palustris*)
 v. Hardstem bulrush (*Schoenoplectus acutus*)
 vi. Nebraska sedge (*Carex nebrascensis*)

5. Plants should be allowed to be established prior to discharging wastewater to the wetland for a period up to 6 weeks. This is done by raising the water level in the wetland to the top of the planting media. After rooting establishment the water level in the wetland should be lowered to the normal operating depth of 4 inches below the treatment media surface.

6. To promote plant growth and enhance root development it is beneficial to lower the water level within the wetland on an annual basis from the normal operating level to a level that is equivalent to a 2 day hydraulic retention time within the treatment zone. The water level should be lowered and raised back to a normal operational level over a several week period.
4.27.3.8 Subsurface Flow Constructed Wetlands Temperature Protection

1. Temperature protection of the subsurface flow constructed wetlands and its components should be taken into consideration by the design engineer.

2. Several inches (≥ 6 inches) of insulating mulch or peat should be placed on a layer of geotextile fabric that covers the surface of the planting media.

3. Plants should not be cut back prior to the non-growing season.

4.27.4 Submerged Flow Constructed Wetlands Construction

1. All vegetation in the placement area of the wetlands should be cleared and grubbed to remove large roots and stumps. Large rocks should also be removed.

2. All soil used in constructing the wetland bottom and berm shall be compacted to at least 95% standard Proctor density.

3. When grading and constructing a wetland cell care must be exercised so as not to create low spots or preferred flows down a particular side of the wetland that will encourage short circuiting.

4. After grading and compaction construction equipment should not enter the constructed wetland cell.

5. If used, the flexible liner containment system shall be constructed on top of a protective layer of sand. The protective layer of sand shall consist of a 4 inch layer of clean sand placed, graded, and compacted to match the wetland slope requirements on the compacted native grade.

 a. The liner should be installed according to the manufacturer’s recommendations and extend to a height of 12 inches above the treatment media and be located within the containment berm at all locations above the planting media.
b. It is recommended that a geotextile fabric with a weight of 4 ounces be placed over the liner prior to placing media in the constructed cell.

6. All media should be washed on site prior to placement in the constructed cell.

4.27.5 Drainfield Trenches

1. Distances shown in Table 4-32 must be maintained between the trench bottom and limiting layer.

2. Capping fill may be used to obtain adequate separation distance from limiting layers but must be designed and constructed according to the guidance for capping fill trenches in section 4.3.

3. Pressure distribution may be used with the following design considerations:
 a. The pressure distribution system related to the drainfield is designed according to section 4.19.
 b. The dosing chamber for the drainfield trenches may be substituted for the overflow basin from the constructed wetland cell.

4. The drainfield shall be sized by dividing the maximum daily flow by the hydraulic application rate for the applicable soil design subgroup listed in Table 4-33.

Table 4-32. Submerged flow constructed wetland vertical separation distance to limiting layers (feet).

<table>
<thead>
<tr>
<th>Limiting Layer</th>
<th>Flow < 2,500 GPD</th>
<th>Flow ≥ 2,500 GPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Soil Types</td>
<td>All Soil Types</td>
</tr>
<tr>
<td>Impermeable layer</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Fractured rock or very porous</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Normal high ground water</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Seasonal high ground water</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: gallons per day (GPD)
Table 4-33. Secondary biological treatment system hydraulic application rates.

<table>
<thead>
<tr>
<th>Soil Design Subgroup</th>
<th>Application Rate (gallons/square foot/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>1.7</td>
</tr>
<tr>
<td>A-2a</td>
<td>1.2</td>
</tr>
<tr>
<td>A-2b</td>
<td>1.0</td>
</tr>
<tr>
<td>B-1</td>
<td>0.8</td>
</tr>
<tr>
<td>B-2</td>
<td>0.6</td>
</tr>
<tr>
<td>C-1</td>
<td>0.4</td>
</tr>
<tr>
<td>C-2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

4.27.6 Inspection

1. A preconstruction meeting between the health district, responsible charge engineer, and installer should occur before commencing any construction activities.

2. The site must be inspected when the wetland cell has been excavated and formed, and prior to installation of the containment structure. Compaction test results for all fill materials, containment berms, and the wetland bottom shall be provided at this time.

3. The health district should inspect all system components before backfilling and inspect the filter container construction before filling with drainrock and treatment construction media.

4. The responsible charge engineer shall conduct as many inspections as needed to verify system component compliance with the engineered plans.

5. The responsible charge engineer shall provide the health district with a written statement that the system was constructed and functions in compliance with the approved plans and specifications. Additionally, the responsible charge engineer shall provide as-built plans to the health district if any construction deviations occur from the permitted construction plans (IDAPA 58.01.03.005.15).

4.27.7 Operation and Maintenance

1. The subsurface flow constructed wetland design engineer shall provide a copy of the system’s operation, maintenance, and monitoring procedures to the health district as part of the permit application and prior to subsurface sewage disposal permit issuance (IDAPA 58.01.03.005.04.k).

2. Fertilizing the system is not required.

3. System irrigation is not required.

4. Systems with multiple cells must have directions on how each cell may be isolated so repair work can be performed without additional wastewater entering the cell.

5. Periodic surface maintenance may be required for any of the following reasons:
 a. In the spring, the thick layer of leaves and any other organic material that has been built up on the system surface should be removed and disposed of with other yard
refuse. Some wetland plants may require trimming, but should not be cut back or harvested.

b. In the summer, if the surface contains weeds, they should be removed and disposed of with other yard refuse. Some wetland plants may require trimming, but should not be cut back or harvested.

c. Autumn maintenance may include gently spreading leaves over the surface and/or replacing the thick layer of mulch or peat over the system. Wetland plants should not be cut back or harvested. Wetland plants and a thick layer of leaves will provide a thermal blanket that will help prevent the system from freezing during the winter.

d. All woody or fibrous plant starts (e.g., tree saplings, bushes, etc.) should be removed any time they are noticed as they may result in damage to the wetland cells or liners.

6. Inspection/maintenance schedule and instructions for the constructed wetland cell(s), septic tank, inlet and outlet control devices, overflow basin, and any mechanical parts associated with system design.

7. Methods to address odors if they become noticeable.

8. Methods to address burrowing animals if they become a problem in or around the wetland cell.

9. A plan to address freezing issues that may arise during colder months. Suggestions include placing a thick layer of mulch or peat over the wetland cell, placing a thick layer of leaves over the wetland cell, temporarily raising and then lowering the water level within the wetland cell after the top water level has frozen.

10. Operation and maintenance directions should be included describing the replacement of the wetland cell media and informing the system owner that a repair permit must be obtained from the health district for this activity.

11. Vegetation management instructions should be included for vegetation start-up, harvesting (if necessary), and replacement. Vegetation sourcing information should also be included.
Appendix E

2.2.5.2 In-Trench Sand Filters and the Method of 72

The method of 72 may also be used in determining the necessary depth of medium sand required for installation between a drainfield and the native soils overlying a limiting layer. Installation of medium sand may be necessary to access suitable soils below an unsuitable layer. Medium sand may be installed to any depth necessary to reach suitable soils as long as the excavation and installation of the medium sand meet the requirements in section 4.23. For porous limiting layers or normal high ground water, the drainfield installation depth must be sufficient to meet the method of 72 and maintain the drainfield at a depth where the sidewalls are within suitable soils (IDAPA 58.01.03.008.02.b). For impermeable limiting layers (e.g., bedrock), the drainfield installation depth must be sufficient to meet the minimum separation distance to impermeable layers required by IDAPA 58.01.03.008.02.c or Table 2-6 if the approval conditions can be met and maintain the drainfield at a depth where the sidewalls are within suitable soils (IDAPA 58.01.03.008.02.b). Separation distances to impermeable layers cannot be reduced to less than the requirements above through the method of 72. The following example is based on the soil profile identified in Figure 2-4.

![Soil profile diagram](image)

Figure 2-4. Test hole profile used in example 2.

Example 2:

In this example, the site soils must be excavated down to 54 inches to access suitable soils. This leaves 36 inches of A-2b soils, providing 43.2 treatment units. The amount of medium sand required to be backfilled prior to system installation would be determined as follows:

- Remaining treatment units = 72 – 43.2 = 28.8
- Depth of medium sand required = 28.8 treatment units remaining/1 treatment unit per inch
• Depth of medium sand required to meet the method of 72 = 29 inches

Thus the medium sand would be backfilled to a depth of 25 inches below grade to meet the method of 72. At a depth of 25 inches the drainfield sidewalls would not be within suitable soils as required by IDAPA 58.01.03.008.02.b. Based on this condition the medium sand would need to be backfilled to a depth of 18 inches below grade to meet the method of 72 and IDAPA 58.01.03.008.02.b. The drainfield would then be installed on top of the leveled medium sand with above-grade capping fill cover requirements.

Note: Regardless of the soil profile and treatment units needed, drainfields must be installed no deeper than 48 inches below grade per IDAPA 58.01.03.008.04. Drainfield depth restrictions only apply to the aggregate as defined in IDAPA 58.01.03.008.08 or the gravelless trench components approved in section 5.7. Medium sand may be installed to any depth necessary to reach suitable soils as long as the excavation and installation of the medium sand meet the requirements in section 4.23.
Appendix F

2.2.4.2 Reduction in Separation Distance to Surface Water with a Variance

The separation distances to surface water are in place to protect water quality, ecological health and current and future the beneficial uses of the surface water resource. Septic tank effluent carries contains both nitrogen and phosphorous which are constituents nutrients that pose a eutrophication threat to surface water. If the separation distance from a drainfield to surface water is proposed to be reduced furthermore than the reduction limits outlined in section 2.2.4.1, an assessment must be done through a variance supported by models that evaluate the potential adverse effects that the total nitrogen and phosphorous loading may have on the receiving surface water body. If the evaluation is favorable (i.e., no adverse impact is determined) then a variance may be issued for a reduced separation distance.

2.2.4.2.1 Supporting Variance Documentation for a Reduced Separation Distance to Surface Water Variance

The minimum documentation requirements for the supporting a variance documentation request are included below:

1. The variance must follow all requirements provided specified in IDAPA 58.01.03.010 and be filed with the health district along with a subsurface sewage disposal permit application.
2. The necessary site evaluation process must be followed to obtain the minimum information necessary to support a subsurface sewage disposal permit and the required effluent nutrient evaluations, nutrient-pathogen (NP) evaluation, and phosphorous evaluation.
3. A nutrient-pathogen (NP) evaluation must be performed to demonstrate site suitability and be acceptable based on the required minimum system design requirements, proposed system placement, and model outputs as outlined in section 2.2.4.2.3 prior to performing a phosphorous evaluation as described in the on-site system surface water separation distance determination guidance and model.
4. The phosphorous evaluation must be performed to demonstrate site suitability based on minimum system design requirements, proposed system placement, and model outputs as outlined in section 2.2.4.2.3.

2.2.4.2.2 Drainfield Design Requirements for a Reduced Separation Distance to Surface Water

A drainfield proposed with a reduced separation distance to surface water as allowed under this variance procedure must meet the following minimum design requirements:

1. The drainfield shall be pressurized and designed based on section 4.19 of this manual.
2. The maximum installation depth of the drainfield in the native soil profile shall be 6 inches and the proposed drainfield sites must meet the above-grade capping fill system criteria (section 4.3) or drip distribution system criteria (section 4.5).
3. Two full-size drainfields shall be installed under the initial permit, and alternating dosing between each drainfield shall be included in the system’s operational design.
4. Replacement area for a third drainfield must be reserved on the property.
5. No separation distance to surface water shall be reduced to less than 100 feet.
6. An alternative pretreatment system shall be installed after the septic tank that is capable of reducing total nitrogen to at least 27 mg/L. A greater total nitrogen reduction level may be required depending on the outcome of the NP evaluation.

Restrictions on Drainfield Designs Necessary to Obtain Successful Outputs in Nutrient Evaluation Models

IDAPA 58.01.03 specifies the minimum drainfield area required to adequately handle the specified volume of wastewater generated in the structure being permitted. It is acceptable for a system design to be in excess of the drainfield area required by IDAPA 58.01.03. To reduce the drainfield’s separation distance to permanent or intermittent surface water, it may require that the drainfield area is in excess of the minimum requirements stipulated in IDAPA 58.01.03. This may be due to the surface area and volume of soil below the drainfield necessary to sequester phosphorous constituents in the wastewater and reduce the potential adverse impacts onto surface water. If it is necessary to expand the drainfield to obtain successful outputs for the models described in section 2.2.4.2.3, the drainfield area in excess of the minimum requirements provided in IDAPA 58.01.03 is strictly limited to the original wastewater flows evaluated for the original permit application and cannot be used in the future for additional structures or existing structure expansion.

2.2.4.2.3 Nutrient Evaluation Model Outputs for a Reduced Separation Distance to Surface Water

To support a variance request for a reduced separation distance to surface water, two nutrient evaluations must be performed based on the following specific effluent nutrient values and minimum model outputs:

Nutrient-Pathogen Evaluation

1. The maximum total nitrogen concentration of the effluent discharged to the drainfield shall be 27 mg/L.
2. All other standard NP evaluation criteria and output requirements apply.

On-Site System Surface Water Separation Distance Determination Guidance and Model

1. The average phosphorous output from the septic tank shall be 8.6 mg/L.
2. The minimum phosphorous site life of receiving soils shall be 50 years for each drainfield.
3. If the minimum phosphorous site life can be met, then the surface water body must be evaluated to determine if it has a Total Maximum Daily Load (TMDL) limit for phosphorous based on the following:
 a. If the water body is not TMDL limited for phosphorous, the subsurface sewage disposal permit may be issued.
 b. If the water body is TMDL limited for phosphorous, its' impact on the surface water body must be evaluated through an equivalency comparison between what may be
permitted by rule (standard separation distances) and the reduced separation distance proposed.

i. If the modeled impact of the system at the reduced separation distance is equivalent to, or less than, the impact of what could be permitted by rule then the subsurface sewage disposal permit may be issued.

ii. If the modeled impact of the proposed system at the reduced separation distance is greater than the impact of what could be permitted by rule then the subsurface sewage disposal permit may not be issued.

34. All other standard On-Site System Surface Water Separation Distance Determination Model criteria and output requirements apply as described in DEQ’s guidance *On-Site System Surface Water Separation Distance Determination Guidance.*

Restrictions on Drainfield Designs Necessary to Obtain Successful Outputs in Nutrient Evaluation Models

IDAPA 58.01.03 specifies the minimum drainfield area required to adequately handle the specified volume of wastewater generated in the structure being permitted. It is acceptable for a system design to be in excess of the drainfield area required by IDAPA 58.01.03. To reduce the drainfield’s separation distance to permanent or intermittent surface water, it may require that the drainfield area is in excess of the minimum requirements stipulated in IDAPA 58.01.03. This may be due to the surface area and volume of soil below the drainfield necessary to sequester phosphorous constituents in the wastewater and reduce the potential impacts on surface water. If it is necessary to expand the drainfield to obtain successful outputs for the models described in section 2.2.4.2.3, the drainfield area in excess of the minimum requirements provided in IDAPA 58.01.03 is strictly limited to the original wastewater flows evaluated for the original permit application and cannot be used in the future for additional structures or existing structure expansion.
Appendix G

4.19.3.1 Piping

Pressure distribution system piping typically consists of several sections including transport piping, manifold, and laterals. Each of these piping selections have components and design factors that are unique to that particular section.

Lateral Piping

Lateral piping is placed within the drainfield and is used to evenly distribute wastewater effluent to the drainfield infiltrative surface. To distribute the effluent, several small diameter orifices are drilled into each lateral. Recommendations for the design of lateral piping and the associated orifices are included below.

Distribution Laterals

1. Lateral length should be shorter than the trench length by at least 6 inches but not more than 36 inches.
2. Laterals in trenches should be placed equidistant from each trench sidewall and from each other.
3. Lateral spacing in beds is recommended to be equal to orifice spacing.
 a. The outside laterals should be placed at one-half the selected lateral spacing from the bed’s edge.
 b. Laterals should not be placed farther apart than 3 feet on center in bed designs and should not be placed farther than 1.5 feet from the bed’s edge regardless of orifice spacing.
 c. The maximum lateral spacing in sand mounds, intermittent and in-trench sand filters, and recirculating gravel filters is 2.25 ft.
4. Determine the lateral diameter based on distribution lateral network design.
 a. Lateral diameter typically ranges from 0.75 to 4 inches for most system applications.
 b. Lateral diameter for typical individual dwelling systems range from 0.75 to 2 inches.
5. Lateral length should be selected based on the lateral diameter, orifice spacing, and piping schedule/class.
 Lateral length is constrained by the minimum pressure at the distal end of the lateral, which shall not drop below 90% of the manifold pressure. This uniform pressure ensures relatively uniform effluent discharge down the length of the lateral.
6. Individual ball or gate valves shall be installed on each lateral to balance residual head on terraced systems.
7. Sweeping cleanouts should be placed at the terminal end of each lateral and accessible from grade.
 a. Cleanout sweeps should be the same diameter piping as the main lateral.
 b. A ball valve or threaded cap should be located on the end of the cleanout that allows the lateral to be flushed.
c. Prior to pressurization of the distribution laterals, the system should be flushed with clean water while all of the terminal ball valves are open or caps are removed.

d. Cleanout access risers shall not extend past the installation depth of the drainfield (i.e. drainrock or gravelless system component) and native soil or medium sand interface.

Orifices

1. Orifice sizing, spacing, and quantity, coupled with each lateral’s pressure, establish the flow rate of the distribution network.

2. Orifice placement should occur
 a. Along the same axis of the distribution lateral.
 b. In a staggered location between any two adjoining laterals so they are located half of the orifice spacing from one another along the drainfield length.
 c. Orifices should be placed to serve a circular area as best as possible with limited overlap (e.g., 6-foot wide trench with two laterals and orifice placement to serve an area 3 feet in diameter).

3. Orifice orientation
 a. Is typically toward the bottom of the trench in aggregate-filled drainfields to facilitate lateral drainage and towards the top of the trench in gravelless trench component drainfields.
 b. If the orifices in the distribution laterals are oriented up, the distribution lateral must slope back towards the manifold to aid in drainage. Sloping of the distribution lateral should be as minimal as possible. All manifold and distribution lateral drainage not drained to the drainfield shall drain back to the dosing chamber if not retained in the transport piping below frost levels.

4. Orifice diameter
 a. Typical orifice diameter is 0.25 inch but may be smaller or larger depending upon system design requirements.
 b. Orifices smaller than 0.25 inch may lead to clogging, which should be considered in system design.
 c. Typical discharge rates based on orifice size are provided in Table 4-18.

5. Orifice spacing should distribute effluent as evenly and uniformly as possible over the infiltrative surface.
 a. Typical orifice spacing is 30–36 inches but may be closer or farther apart depending upon system design requirements, system flow rate, and soil type.
 b. For most installations, the spacing will be between 18–36 inches.
 c. The maximum disposal area per orifice spacing for sand mounds, intermittent and in-trench sand filters, and recirculating gravel filters is $4 \text{ ft}^2 / 2.25 \text{ ft}$.

6. Orifices should be drilled with a sharp bit, and any burs, chips, or cuttings from the drilling process should be removed from the piping prior to assembly.

7. Orifice shields are recommended to be used when orifices are oriented up.
Appendix I

2.1 Soils Texture and Group Determinations

Revision: January 30, 2013 February 4, 2016

2.1.1 Determining Soil Textural Classifications

Soil texture is determined by the proportion of three separates: sand, silt, and clay. It is one of the most important characteristics of soil for water movement because of its relationship to pore size, pore size distribution, and pore continuity. Permeability, aeration, and drainage are all related to the soils’ ability to filter and adsorb or otherwise retain, pollutants for treatment. Sizes of the major separates are shown in Table 2-1.

Table Error! No text of specified style in document.-1. Sizes of mineral, soil, and rock fragments.

<table>
<thead>
<tr>
<th>Material</th>
<th>Equivalent Diameter</th>
<th>Passes Sieve #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td><0.002 mm<sup>b</sup></td>
<td>425</td>
</tr>
<tr>
<td>Silt</td>
<td>0.002–0.05 mm</td>
<td>270</td>
</tr>
<tr>
<td>Very fine sand</td>
<td>0.05–0.10 mm</td>
<td>140</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.10–0.25 mm</td>
<td>100</td>
</tr>
<tr>
<td>Medium sand</td>
<td>0.25–0.50 mm</td>
<td>50</td>
</tr>
<tr>
<td>Coarse sand</td>
<td>0.50–1.00 mm</td>
<td>16</td>
</tr>
<tr>
<td>Very coarse sand</td>
<td>1.00–2.00 mm</td>
<td>10</td>
</tr>
<tr>
<td>Gravel</td>
<td>2.00 mm–7.5 cm</td>
<td>3 in.<sup>b</sup></td>
</tr>
<tr>
<td>Cobbles</td>
<td>7.5–25 0.4 cm</td>
<td>10 in.</td>
</tr>
<tr>
<td>Stones</td>
<td>25 0.4–6004 cm</td>
<td>24 in.</td>
</tr>
<tr>
<td>Boulders</td>
<td>>6004 cm</td>
<td>—</td>
</tr>
</tbody>
</table>

^{a.} NRCS National Soil Survey Handbook (NSSH) Part 618 (Subpart A), 618.46 (D) and 618.31(K) 3ii

^{b.} Notes: millimeter (mm); centimeter (cm); inches (in)

The Soil Textural Classification used by Idaho was adopted from the United States Department of Agriculture (USDA). Soil textures of proposed soil absorption sites are determined according to these guidelines. Once the textures have been determined, then the soil design groups may be specified for the absorption system design. Characteristics of each soil texture are shown in Table 2-2. To determine the texture classification of soils, refer to Table 2-3, Table 2-3, and Figure 2-1 for summaries of the soil particle distributions and percentages in each of the textures. Refer to Figure 2-2 for a flowchart of the steps for determining soil classification.
Table 2-2. Soil textural characteristics

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Visual Detection of Particle Size and General Appearance of Soil</th>
<th>Squeezed by Hand and Pressure Released When Air-Dry</th>
<th>Squeezed by Hand and Pressure Released When Moist</th>
<th>Ribbon Between Thumb and Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>Soil has a granular appearance, loose, gritty grains visible to the eye. Free flowing when dry.</td>
<td>Will not form a cast. Falls apart easily.</td>
<td>Forms cast that crumbles at least touch.</td>
<td>Cannot ribbon</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>Somewhat cohesive soil; aggregates easily crushed. Sand dominates but slight velvety feel.</td>
<td>Cast crumbles easily when touched.</td>
<td>Cast will bear careful handling.</td>
<td>Cannot ribbon</td>
</tr>
<tr>
<td>Loam</td>
<td>Uniform mixture of silt, clay, and sand. Aggregates crushed under moderate pressure. Velvety feel that becomes gritty with continued rubbing.</td>
<td>Cast will bear careful handling.</td>
<td>Cast can be handled freely.</td>
<td>Cannot ribbon</td>
</tr>
<tr>
<td>Silt loam</td>
<td>Quite cloddy when dry. Can be pulverized easily to a fine powder. Over 50% silt.</td>
<td>Cast can be freely handled. Flour-like feel when rubbed.</td>
<td>Cast can be freely handled. When wet, flows into puddle.</td>
<td>Will not ribbon but has slight plastic look.</td>
</tr>
<tr>
<td>Silt</td>
<td>Over 80% silt with little fine sand and clay. Cloddy when dry pulverizes readily to a flour-like powder.</td>
<td>Cast can be freely handled.</td>
<td>Cast can be freely handled. Puddles readily. “Stick” feeling.</td>
<td>Ribbons with a broken appearance.</td>
</tr>
<tr>
<td>Silty clay loam</td>
<td>Hard lumps when dry, resembling clay. Takes strong pressure to break the lumps.</td>
<td>Cast can be freely handled.</td>
<td>Cast can be freely handled. Can be worked into a dense mass.</td>
<td>Forms thin ribbon that breaks easily.</td>
</tr>
<tr>
<td>Clay</td>
<td>Very fine-textured soil breaks into very hard lumps that take extreme pressure to break.</td>
<td>Cast can be freely handled.</td>
<td>Cast can be freely handled. “Sticky” feeling.</td>
<td>Forms long, thin ribbons.</td>
</tr>
<tr>
<td>Soil Texture</td>
<td>USDA Soil Textural Classification</td>
<td>Dry Soil Description (0-25% available moisture percent)</td>
<td>Moist Soil Description (75-100% available moisture percent)</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Coarse</td>
<td>Fine sand</td>
<td>Dry, loose, will hold together if not disturbed, loose sand grains on fingers with applied pressure</td>
<td>Wet, forms a weak ball with wet outline left on hand, light to medium water staining on fingers. Will not ribbon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loamy fine sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coarse sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loamy coarse sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loamy sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very fine sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately Coarse</td>
<td>Sandy loam</td>
<td>Dry, forms a very weak ball, aggregated soil grains break away easily from ball</td>
<td>Wet, forms a ball with well-defined finger marks, light to heavy soil/water coating on fingers. Makes a weak ribbon between thumb and forefinger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine sandy loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very fine sandy loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coarse sandy loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loamy sandy loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very fine sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Sandy clay loam</td>
<td>Dry, soil aggregations break easily, no moisture staining on fingers, clods crumble with applied pressure</td>
<td>Wet, forms a ball with well-defined finger marks, light to heavy soil/water coating on fingers. Ribbons between thumb and forefinger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silt loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine</td>
<td>Clay</td>
<td>Dry, soil aggregations easily separate, clods are hard to crumble with applied pressure</td>
<td>Wet, forms a ball, uneven medium to heavy soil/water coating on fingers. Ribbons easily between thumb and forefinger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clay loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silty clay loam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sandy clay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silty clay</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Available moisture percent is that percent of the available water-holding capacity of the soil occupied by water.
c. Ball is formed by squeezing a hand full of soil very firmly with one hand.
d. Ribbon is formed when soil is squeezed out of hand between thumb and forefinger.
Table 2-3. Soil textural proportions.

<table>
<thead>
<tr>
<th>USDA Soil Textural Classifications</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>>85</td>
<td><15</td>
<td><10</td>
</tr>
<tr>
<td>Loamy sand</td>
<td>70–90</td>
<td><30</td>
<td><40–15</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>43–85</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>Loam</td>
<td>23–52</td>
<td><28</td>
<td>7–27</td>
</tr>
<tr>
<td>Silty loam</td>
<td><50</td>
<td>50–88</td>
<td><27</td>
</tr>
<tr>
<td>Silt</td>
<td><20</td>
<td>>80</td>
<td><12</td>
</tr>
<tr>
<td>Sandy clay loam</td>
<td>45–80</td>
<td><28</td>
<td>20–35</td>
</tr>
<tr>
<td>Clay loam</td>
<td>20–45</td>
<td>15–53</td>
<td>27–40</td>
</tr>
<tr>
<td>Silty clay loam</td>
<td><20</td>
<td>640–73</td>
<td>27–40</td>
</tr>
<tr>
<td>Sandy clay</td>
<td>45–65</td>
<td><20</td>
<td>35–55</td>
</tr>
<tr>
<td>Silty clay</td>
<td><20</td>
<td>40–60</td>
<td>40–60</td>
</tr>
<tr>
<td>Clay</td>
<td><45</td>
<td><40</td>
<td>>40</td>
</tr>
</tbody>
</table>

Basic textural names may be modified if the soil mass contains 15%–95% of stones, cobble, or gravel by adding the name of the dominant rock fragment:

- Gravelly or stony = 15%–35% of the soils volume is rock fragments.
- Very gravelly or very stony = 35%–60% of the soils volume is rock fragments.
- Extremely gravelly or extremely stony = 60%–95% of the soils volume is rock fragments.
- 95% or more should take the name of the geological type, such as granite, gneiss, limestone, or gravel.
TGM-Soil Texture Flowchart Triangle

A black and white version is provided in Appendix B.

Figure 2-1. United States Department of Agriculture soil textural triangle.
Figure 2-2. Soil texture determination flowchart.

A black and white version is provided in Appendix B.
2.1.2 Soil Design Groups and Subgroups

This section is provided as a guide to field environmental health personnel in making technical allowances for standard systems and for health districts to use in selecting alternative systems. The required absorption area of a subsurface sewage disposal system depends on the texture of the soils in the proposed disposal system location. In a similar manner, required separation distances between the disposal area and features of concern, such as wells, surface water, and ground water, depend on soil texture. Soils surrounding the disposal system and those below it may not be the same.

The soil design group or subgroup (Table 2-4) used to determine the minimum effective soil depth, and applicable separation distances, describes the finest-textured soils adjacent to the drainfield trenches and beneath the drainfield for the effective soil depth.

All other soil textures and some soil features (i.e., gravel, coarse sand, all clays, organic muck, claypan, hardpan, and duripan) are unsuitable for installing a standard drainfield system.

Table 2-4. Soil textural classification design groups.

<table>
<thead>
<tr>
<th>Soil Design Group</th>
<th>Soil Design Subgroup</th>
<th>Soil Textural Classification</th>
<th>Application Rate a (GPD/ft2)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSc</td>
<td>NS</td>
<td>Gravel</td>
<td>NS</td>
</tr>
<tr>
<td>A</td>
<td>A-1</td>
<td>Medium-coarse sand</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>A-2a</td>
<td>Medium-loamy coarse sand</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>A-2b</td>
<td>Fine sand</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loamy sand</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B-1</td>
<td>Very fine sand</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>B-2</td>
<td>Loam</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sandy clay loamd</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\leq27% clay)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C-1</td>
<td>Silt</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sandy clay loame</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silty clay loame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-2</td>
<td>Clay loame</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sandy Clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silty Clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic muck</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duripan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardpan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Claypan</td>
<td></td>
</tr>
</tbody>
</table>

a. Application rates are for domestic strength wastewater. A safety factor of 1.5 or more should be used for wastes of significantly different characteristics.
b. Gallons per day per square foot (GPD/ft²).

c. Not suitable (NS) for installation of a subsurface sewage disposal system.

d. See medium sand definition (section 3.2.8.1.2) for a manufactured material that may be acceptable for use.

e. Soils without expandable clays.

2.1.3 Soil Design Subgroup Corrections

A soil design subgroup may be lowered as indicated in this section. (Subgroup correction is used to determine the application rate only; it will not change surface water or ground water separation requirements.)

1. Soil with moderate or strong platy structure should be lowered one subgroup for design purposes.

2. Soil should be lowered one subgroup if 35%–60% of its volume is rock fragments (very gravelly, very stony).

3. Soil should be lowered by two subgroups if 60%–95% of its volume is rock fragments (extremely gravelly, extremely stony).

4. Soil with 95% or greater rock fragments is unsuitable as an effective soil for subsurface sewage disposal.

5. Uniform fine and very fine sand (e.g., blow sands) should be lowered two subgroups for design purposes. Soils that qualify for this modification have a coefficient of uniformity less than three ($C_u < 3.0$).

Example:

A soil evaluation results in the designation of loamy sand with rock fragments volumes estimated at 70% of the total soil volume below within the effective soil depth of below the drainfield installation. The loamy sand would be assigned a soil design subgroup of A-2b consistent with Table 2-4. Due to the estimated volume of rock fragments, the soil design subgroup would then be lowered by two subgroups resulting in an assigned soil design subgroup of B-2. Based on these determinations, the drainfield would be sized consistent with the B-2 soil application rate (0.45 GPD/ft²; section 2.3, Table 2-94) to increase the available soil surface available for effluent treatment due to the soil surface being reduced by large fraction rock. However, both the required vertical (effective soil depth, IDAPA 58.01.03.008.02.c) and the horizontal separation distances (IDAPA 58.01.03.008.02.d) shall meet the requirements for soil design group A soils.
Appendix J

Table 2-9 is proposed to be incorporated into Table 2-4 in section 2.1.2

2.3—Standard Percolation Test

Revision: September 3, 2009

A percolation test checks on-site surveys and soil analysis data only. It is not to be used as the sole qualifier of a proposed disposal site’s infiltrative capability. The most recent version of the following ASTM standards should be applied when evaluating a site’s infiltrative capability:

- ASTM D3385, Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer
- ASTM D5093, Standard Test Method for Field Measurement of Infiltration Rate Using a Double-Ring Infiltrometer with a Sealed-Inner Ring

Percolation and application rates by soil type are shown in Table 2-9.

Table 2-9 Percolation and application rates by soil type.

<table>
<thead>
<tr>
<th>Soil Design Subgroup</th>
<th>Soil Type</th>
<th>Percolation Rate (minutes/inch)a</th>
<th>Application Rate (GPD/ft²)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Gravel, coarse sand</td>
<td><1</td>
<td>NS</td>
</tr>
<tr>
<td>A-1</td>
<td>Medium sand</td>
<td>1–3</td>
<td>1.20</td>
</tr>
<tr>
<td>A-2a</td>
<td>Medium sand, poorly graded</td>
<td>4–6</td>
<td>1.0</td>
</tr>
<tr>
<td>A-2b</td>
<td>Fine sand, loamy sand</td>
<td>6–15</td>
<td>0.75</td>
</tr>
<tr>
<td>B-1</td>
<td>Sandy loam</td>
<td>16–30</td>
<td>0.60</td>
</tr>
<tr>
<td>B-2</td>
<td>Loam, silt loam</td>
<td>31–60</td>
<td>0.45</td>
</tr>
<tr>
<td>C-1</td>
<td>Sandy or silty clay loam</td>
<td>45–60</td>
<td>0.30</td>
</tr>
<tr>
<td>C-2</td>
<td>Clay loam*</td>
<td>61–120</td>
<td>0.20</td>
</tr>
<tr>
<td>NS</td>
<td>Clays, organic muck, duripan,</td>
<td>>120</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>hardpan, claypan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Estimates only; actual percolation rates as determined using ASTM D5093 or ASTM D3385 may differ.
b. Application rates are for domestic wastes. A safety factor of 1.5 or more should be used for wastes of significantly different characteristics. Gallons per day per square foot (GPD/ft²).
c. Not suitable (NS) for installation of a subsurface sewage disposal system.
d. See medium sand definition for a material that may be acceptable for use.
e. Soils without expandable clays.
4.21 Recirculating Gravel Filter

Revision: May 24, February 4, 2015

4.21.1 Description

A recirculating gravel filter is a bed of filter media in a container that filters and biologically treats septic tank effluent. The filter effluent is returned to the recirculation tank for blending with untreated septic tank effluent and recirculated back to the filter. The treated effluent is distributed to a disposal trench of reduced dimension. The effluent returned from the filter may either return to the recirculating tank or a combination of the equalization tank and recirculating tank depending on effluent treatment requirements. Minimum system components include, but are not limited to, the following:

1. Septic tank
2. Equalization tank (if nitrogen reduction is required)
3. Recirculation tank
4. Low-pressure distribution system
5. Free-access filters, dosing chamber, mechanical
6. Flow splitter
7. Dosing chamber (if drainfield is pressurized)
8. Drainfield.

4.21.2 Approval Conditions

1. Nondomestic wastewater with biological oxygen demand (BOD) or TSS exceeding must be pretreated to normal domestic wastewater strengths (section 3.2.1, Table 3-1) is required to be pretreated to these levels before discharge into the recirculating gravel filter system.
2. The bottom of the filter must not come within 12 inches of seasonal high ground water.
3. All pressurized distribution components and design elements of the recirculating gravel filter system that are not specified within section 4.21 must be designed and installed according to the guidance for pressure distribution systems in section 4.19.
4. All tanks and the recirculating gravel filter container shall meet the same separation distance requirements as a septic tank.
5. Recirculating gravel filters required to reduce total nitrogen shall meet the additional design requirements in section 4.21.3.2.3.
6. System must be designed by a PE licensed in Idaho.
6. Recirculating gravel filters required reduce total nitrogen to 27 mg/L shall follow the operation, maintenance, and monitoring requirements for extended treatment package systems (section 4.8.3) effective July 1, 2017.

a. Operation and maintenance must be performed by a permitted complex installer that maintains a current service provider endorsement.

b. All subsurface sewage disposal permits issued for recirculating gravel filters meeting the above requirements shall contain the following statement beginning July 1, 2017: Annual treatment system equipment servicing and reporting is required per IDAPA 58.01.03.005.14. Operation and maintenance must be conducted by a complex installer maintaining a current service provider endorsement.

c. See section X.X.X for compliance related information for recirculating gravel filter operation, maintenance, and reporting.

4.21.3 Minimum design requirements for the recirculating gravel filter components are provided below.

4.21.2.1 Recirculating Tank

1. Minimum recirculating tank volume shall be capable of maintaining two times the daily design flow of the system (Figure 4-27).

2. The recirculating tank may be a modified septic tank or dosing chamber selected from section 5.2 or section 5.3.

 a. Alternatively, the recirculation tank may be designed by the system’s design engineer to meet the minimum requirements of this section and IDAPA 58.01.03.007.

 b. Recirculating tank design is exempt from subsections .07, .08, .10, and .11, and .13 of IDAPA 58.01.03.007.

3. The recirculating tank shall be accessible from grade and the return line, pump, pump screen, and pump components shall be accessible from these access points.

4. The recirculating filter effluent return point shall be located before the recirculation tank and shall enter at the inlet of the recirculating tank, unless a gravity float valve is used in which case the return point shall be located near the inlet.

5. The recirculating tank shall meet all other minimum design and equipment requirements of section 4.19.3.4.
4.21.2.2 Recirculating Filter

1. The filter container shall be constructed of reinforced concrete or other materials where equivalent function, workmanship, watertightness, and at least a 20-year service life can be documented.

2. The following requirements must be met for flexible membrane liners [when used in place of concrete]:

 a. Have properties equivalent to or greater than 30-mil PVC.
 b. Have field repair instructions and materials provided to the purchaser of the liner.
 c. Have factory fabricated boots for waterproof field bonding of piping to the liner.
 d. Liner must be placed against smooth, regular surfaces free of sharp edges, nails, wire, splinters, or other objects that may puncture the liner. A 4-inch layer of clean sand should provide liner protection.

23. The filter surface area is sized at a maximum of 5 gallons/ft²/day forward flow (forward flow is equivalent to the daily design flow from the structure).

34. Filter construction media shall meet the specifications in section 3.2.8.1.3 for pea gravel and section 3.2.8.1.1 for drainrock.

45. Minimum filter construction specifications (i.e., media depth, geotextile fabric placement, cover slopes, filter container height, and piping placement) shall meet the dimensions and locations depicted in Figure 4-28.

56. The bottom of the filter may be sloped at least 1% to the underdrain pipe.
An underdrain must be located at the bottom of the filter to return filtered effluent to the dosing chamber meeting the following requirements:

a. May be placed directly on the bottom of the filter.

b. Placed level throughout the bottom of the filter.

c. Constructed of slotted drain pipe with 0.25-inch slots, 2.5 inches deep and spaced 4 inches apart located vertically on the pipe, or perforated sewer pipe with holes located at 5 and 7 o’clock.

d. One underdrain should be installed for each filter cell zone.

e. The distal end is vented to the atmosphere, protected with a screen, and located within the filter to allow entry of air flow into the bottom of the filter and access for cleaning and ponding observation.

f. Connected to solid pipe that meets the construction requirements of IDAPA 58.01.03.007.21, extends through the filter, and is sealed so the joint between the filter wall and pipe is watertight.

Two observation tubes should be placed in the recirculating filter to monitor for ponding and clogging formation.

a. The monitoring tubes must be secured and perforated near the bottom.

b. The monitoring tubes must extend through the recirculating filter cover and have a removable cap.

The surface of the recirculating filter must be left open to facilitate oxygenation of the filter. No soil cover shall be placed above the upper layer of drainrock in the recirculating gravel filter. However, the filter must be designed to prevent accidental contact with effluent from the surface. The following minimum requirements must be followed:

a. Chain-link fence or another acceptable protective barrier (Figure 4-28) shall be placed at the top of the filter container and cover the entire surface of the filter to prevent access, unless fencing is placed around the entire system to prevent access.

b. Geotextile fabric shall be placed over the access barrier.

c. Fencing around the recirculating gravel filter is recommended for all central systems.
4.21.2.2.1 Recirculating Filter Cells

Depending on the volume of effluent and type of structure using a recirculating gravel filter, the recirculating filter may need to be split into cells that contain dosing zones (Figure 4-29). A filter cell is the total filter area that can be served by a single dosing pump or set of pumps. A filter zone is the area of a cell that can be dosed by a single dosing pump at any one time. Zone sizing depends upon pump size, lateral length, perforation size, and perforation spacing. The minimum filter design requirements for cells, zones, and pumps include the following:

1. Single-family homes: one cell, one zone, and one pump. If more than one cell or zone is used for a single-family home, duplex pumps are not required.
2. Central systems or systems connected to anything other than a single-family home (flows up to 2,500 GPD): one cell, two zones, and one pump per zone.
3. Large soil absorption systems (flows of 2,500 to 5,000 GPD): one cell, three zones, and one pump per zone.
4. Large soil absorption systems (flows over 5,000 GPD): two cells, two zones per cell, and one pump per zone.
5. An alternative to installing one pump per zone is to install duplex pumps connected to sequencing valves that alternate zones for each pressurization cycle. For systems with multiple cells, each cell must have a dedicated set of duplex pumps. Pumps should alternate between each cycle.

6. Filter cells are recommended to be hydraulically isolated from one another and shall be constructed according to the minimum requirements in section 4.21.3.2.

7. Each cell shall be equivalent in surface area and volume and have the same number of zones.

8. Each zone shall have the same number of laterals and perforations.

Figure 4-29. Overhead view of a recirculating gravel filter with multiple cells and dosing zones discharging to a dosing chamber utilizing mechanical flow splitting.

4.21.2.2.2 Recirculating Filter Dosing

1. The minimum recirculation ratio of the filter is 5:1, and the maximum recirculation ratio is 7:1 (the daily flow moves through the filter a minimum of five times or a maximum of seven times before discharge to the drainfield).

2. Timed dosing is required, and the filter dosing cycle should meet the following minimum recommendations:
 a. Pumps are set to dose each zone approximately two times per hour.
 b. Dose volume delivered to the filter surface for each cycle should be 10.4% of the daily flow from the structure (forward flow).
 c. A pump-on override float should be set at a point that equates to 70% of the recirculating tank’s volume.
 d. A low-level off float should be placed to ensure that the pump remains fully submerged at all times.

3. The pump controls should meet the following:
a. Be capable of monitoring low- and high-level events so that timer settings can be adjusted accordingly.

b. Have event counters and run-time meters to monitor daily flows.

4.21.2.3 **Dosing-Chamber Effluent Return**

1. Effluent must be returned from the filter to the recirculation tank which may occur by gravity or under pressure.

2. Gravity return must occur utilizing a float valve (Figure 4-30) within the recirculating tank, float valve must:
 a. Be located on the inlet side of the recirculating tank.
 b. Allow for continual splitting of filtered effluent when the buoy is fully seated and discharging to the drainfield.
 c. Be capable of returning 83% of the filtered effluent to the recirculation tank when the buoy is fully seated.

3. Other types of gravity flow splitters shall not be used to split recirculation flows.

4. Pressurized return must be done utilizing a dosing chamber meeting the minimum requirements of section 4.19.3.4, the dosing chamber must:
 a. Be located after the recirculating filter.
 b. Utilize a mechanical flow splitter (Figure 4-31 and Figure 4-32) that is capable of simultaneously returning effluent to the recirculating tank and discharging effluent to the drainfield.

5. Mechanical flow splitters shall:
 a. Be located outside of the dosing chamber and prior to the recirculation tank.

2. A dosing chamber meeting the minimum requirements of section 4.19.3.4 shall be installed after the recirculating filter, and all effluent passing through the recirculating filter shall be returned to the dosing chamber.

2. A mechanical flow splitter (Figure 4-3031 and Figure 4-3132) capable of simultaneously returning effluent to the recirculating tank and discharging effluent to the drainfield shall be located outside of the dosing chamber and before the recirculation tank. The flow splitter shall meet the following minimum requirements:
 a. The flow splitter must be capable of returning effluent to the recirculating tank and discharging to the drainfield in a volume ratio equivalent to the designed recirculation ratio (e.g., if a recirculation ratio of 5:1 is used, 8083% of the filtered effluent by volume shall be returned to the recirculating tank, and 2017% shall be discharged to the drainfield).
 b. Float valves that do not allow for continual splitting of filtered effluent before discharge to the drainfield and nonmechanical weirs and flutes shall not be used to split flows.

3. Dosing of effluent from the dosing chamber may be either timed or on-demand.
Discharge of effluent to the drainfield must occur after filtration and flow splitting.

Figure 4-30. Gravity float valve return location within the recirculating tank.
Figure 4-3031. Bottom view of a mechanical flow splitter for gravity distribution that delivers wastewater to all transport pipes with each dose.
Figure 4-3132. Overhead view of a mechanical flow splitter for pressure distribution that only delivers wastewater to one transport pipe with each dose.
Figure 4-33. Cross section of a recirculating gravel filter system with pressure transport to, and/or within, the drainfield.
Figure 4-34. Cross section of a recirculating gravel filter system with gravity transport to the drainfield.
4.21.3.4 Additional Design Elements for Recirculating Gravel Filter Systems Required to Reduce Total Nitrogen

4.21.3.4.1 Equalization Tank

1. An equalization tank is required for all recirculating gravel filters treating effluent for total nitrogen.

2. A septic tank sized according to IDAPA 58.01.03.007.07 shall precede the equalization tank.

3. Minimum equalization tank volume shall be capable of maintaining two times the sum of the daily design flow of the system and recirculation volume returned to the equalization tank.

4. The equalization tank may be a modified septic tank or dosing chamber selected from section 5.2 or section 5.3.
 a. Alternatively, the equalization tank may be designed by the system’s design engineer to meet the minimum requirements of this section and IDAPA 58.01.03.007.
 b. Equalization tank design is exempt from subsections .07 and .08 of IDAPA 58.01.03.007.

5. The recirculating filter effluent return point shall be located before the equalization tank and shall enter at the inlet of the equalization tank.

4.21.3.4.2 Effluent Return

1. Effluent shall be returned from the recirculating gravel filter in a ratio of 20% to the equalization tank and 80% to the recirculation tank (Figure 4-35).

2. Effluent return from the filter to the equalization tank and recirculation tank may be done by gravity or under pressure.

3. The design engineer must specify how the return ratio will be met with the system design and document the return flow in the system design calculations.

Figure 4-35. Effluent return locations and ratios from the recirculating gravel filter and flow splitter for systems treating total nitrogen.
Figure 4-3236. Cross section of a nitrogen-reducing recirculating gravel filter system with pressure transport to, and/or within, the drainfield.
Figure 4-37. Cross section of a nitrogen-reducing recirculating gravel filter system with gravity transport to the drainfield.
4.21.3 Filter Construction

1. All materials must be structurally sound, durable, and capable of withstanding normal installation and operation stresses (Figure 4-32).
2. Components that may be subject to excessive wear must be readily accessible for repair or replacement.
3. All filter containers must be placed over a stable level base.
4. Geotextile filter fabric shall be placed only over the top of the filter and must not be used in-between the filter construction media and underdrain aggregate.
5. Access to the filter surface must be provided to facilitate maintenance.

4.21.4 Drainfield Trenches

1. Distances shown in Table 4-20 must be maintained between the trench bottom and limiting layer.
2. Pressure distribution, when used, shall meet the following design considerations:
 a. If a pressure distribution system is designed within the drainfield, it must be designed according to section 4.19.
 b. If the pressurized line from the mechanical flow splitter breaks to gravity before the drainfield, it must be done according to section 4.19.3.6.
 c. The recirculation tank and recirculating filter may not be used as the dosing chamber for the drainfield or for flow-splitting purposes.
3. The minimum area, in square feet of bottom trench surface, shall be calculated from the maximum daily flow of effluent divided by the hydraulic application rate for the applicable soil design subgroup listed in Table 4-21.

Table 4-20. Recirculating gravel filter vertical separation to limiting layers (feet).

<table>
<thead>
<tr>
<th>Limiting Layer</th>
<th>Flow < 2,500 GPD</th>
<th>Flow ≥ 2,500 GPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Soil Types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impermeable layer</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Fractured rock or very porous layer</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Normal high ground water</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Seasonal high ground water</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: gallons per day (GPD)
Table 4-21. Secondary biological treatment system hydraulic application rates.

<table>
<thead>
<tr>
<th>Soil Design Subgroup</th>
<th>Application Rate (gallons/square foot/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>1.7</td>
</tr>
<tr>
<td>A-2a</td>
<td>1.2</td>
</tr>
<tr>
<td>A-2b</td>
<td>1.0</td>
</tr>
<tr>
<td>B-1</td>
<td>0.8</td>
</tr>
<tr>
<td>B-2</td>
<td>0.6</td>
</tr>
<tr>
<td>C-1</td>
<td>0.4</td>
</tr>
<tr>
<td>C-2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

4.21.4 Inspection

1. A preconstruction meeting between the health district, responsible charge engineer, and installer should occur before commencing any construction activities.

2. The health district should inspect all system components before backfilling and inspect the filter container construction before filling with drainrock and filter construction media.

3. The responsible charge engineer shall conduct as many inspections as needed to verify system and component compliance with the engineered plans.

4. The responsible charge engineer shall provide the health district with a written statement that the system was constructed and functions in compliance with the approved plans and specifications. Additionally, the responsible charge engineer shall provide as-built plans to the health district if any construction deviations occur from the permitted construction plans (IDAPA 58.01.03.005.15).

4.21.5 Operation and Maintenance

1. The recirculating gravel filter design engineer shall provide a copy of the system’s operation, maintenance, and monitoring procedures to the health district as part of the permit application and before subsurface sewage disposal permit issuance (IDAPA 58.01.03.005.04.k).

2. Minimum operation, maintenance, and monitoring requirements should follow each system component manufacturer’s recommendations.

3. Instructions on how to trouble shoot the pump control panel should be included to allow adjustment to pump cycle timing if the low-level off or high-level alarm switch is frequently tripped in order to maintain the minimum 5:1 recirculation ratio.
4. Operation and maintenance directions should be included describing replacement of the filter construction media and informing the system owner that a permit must be obtained from the health district for this activity.

5. Maintenance of the septic tank should be included in the O&M manual.

6. All pressure distribution system components should be maintained as described in section 4.19.5.

7. Check for ponding at the filter construction media/underdrain aggregate interface through the observation tube in the recirculating filter.

8. Clean the surface of the filter regularly to remove leaves and other organic matter that may accumulate in the aggregate or rock cover.

9. Regularly check the recirculating gravel filter for surface odors. Odors should not be present and indicate that something is wrong. Odors are likely evidence that the dissolved oxygen in the filter is being depleted and that BOD and ammonia removal are being impacted.
Appendix L

4.5 Drip Distribution System

Revision: September 18, 2014 February 4, 2016

4.5.1 Description

Drip distribution systems are comprised of a shallow network of thin-walled, small-diameter, flexible tubing with self-cleaning emitters to discharge filtered septic tank effluent or pretreated effluent into the root zone of the receiving soils. The drip system is flushed either continuously or noncontinuously depending upon the system design. Minimum system components include, but are not limited to, the following:

1. Septic tank
2. Pretreatment system (not required in grey water system designs or septic tank effluent drip distribution designs):
 a. Intermittent sand filter
 b. Recirculating gravel filter
 c. Extended treatment package system
3. Filtering system: spin filter (screen filter), cartridge or disk filters (flushable filter cartridge), and filter flush return line
4. Effluent dosing system: dosing chamber, pump tank, and dose pump, and timed dosing control
5. Process controller: programmable logic controller (PLC)
6. Flow meter
7. Drip tubing network, and associated valving, supply line and manifold, pressure regulators, return manifold and line, and air/vacuum relief valves

4.5.2 Approval Conditions

1. Drip distribution systems shall only be installed at locations that meet the criteria in the site suitability subsection of IDAPA 58.01.03.008.02 and 58.01.03.013 (section 8.1). Site slope may not exceed 45%.
2. The effective soil depths that are established for the alternative pretreatment systems listed in section 4.5.1(2) may be applied to drip distribution systems when they are used in the system design. All components that are in contact with wastewater must be rated by the manufacturer for wastewater applications.

32. All pressurized distribution components and design elements of the drip distribution system that do not have design criteria specified within section 4.5 shall follow the design guidance provided in section 4.19.
4. Pretreatment system design, installation, operation, and maintenance will follow the specific pretreatment system guidance provided in this manual.

53. System must be designed by a PE licensed in Idaho.

4. The design engineer shall provide an O&M manual for the system to the health district prior to permit issuance.

4.5.3 Design Requirements

Many considerations need to be made in the design of a drip distribution system based on site-, flow-, and effluent-specific characteristics. These characteristics will affect several system components depending on each specific design scenario. The design of a drip distribution system should be approached as an integrated system rather than individual components. System design should account for, but is not be limited to:

1. Tubing material and emitter type
2. Brand of drip tubing to be used and associated proprietary components
3. Level and type of pretreatment to be provided
4. System configuration based on site conditions and constraints
5. Extent of automation, monitoring, and timing of critical operation processes and procedures.

Design requirements vary dependent upon the allowable effluent quality and system flushing. Requirements based on these system parameters are included in the subsequent sections.

4.5.3.1 Basic Design Requirements

The following minimum design elements apply to both septic tank and pretreated effluent systems and continuous and noncontinuous flush drip distribution systems:

1. Application areas up to 2 square feet per foot (ft²/ft) of drip irrigation line may be used. The septic tank must have a volume sufficient to meet the minimum size requirements of IDAPA 58.01.03.007.07 (section 8.1) plus two-times the additional volume of flushing wastewater returned to the septic tank during flushing events.

2. Drip tubes may be placed on a minimum of 2 foot centers.

32. Drip distribution tubes are placed directly in native soil at a depth of 6–18 inches with a minimum final cover of 12 inches.

3. Drip distribution tubes should be placed on contour and laid out to drain through the emitters as evenly as possible to prevent localized overloading of the drip distribution system.
 a. A minimum of two zones are recommended regardless of system size and zones should be kept as small as is reasonable.
 b. Lateral lengths within a zone should be close to equal to achieve efficient flushing.
 c. Zones within a system should be close to equal in size to achieve efficient and consistent application of wastewater.
d. Steep slope installations must account for depressurization flow and be designed to prevent movement of the wastewater to the bottom of the drip distribution zone during this time, the following design suggestions may help:

 i. Isolation of lateral lines using horizontal manifolds or check valves.

 ii. Installing long, narrow zones when possible.

 iii. Elevating a section of tubing between the manifold and lateral or elevating looped ends may also help maintain effluent within tubing runs.

e. In lower permeability soils (i.e. clayey soils) it is recommended that drip tubing and emitter spacing be reduced while maintaining the minimum square footage to increase the emission points and maintaining the dosing volume to decrease wastewater travel distance through the soil.

44. The design application rate is based on the most restrictive soil type encountered within 2 feet of the drip tubes the minimum effective depth of soil below the drip distribution tubing required to meet the necessary separation distance to limiting layers.

5. The effective soil depth to limiting layers below the drip tubes should meet the depths specified in section 4.21.5, Table 4-20.

65. Effluent is required to be filtered with a 100 micron or smaller disc or flushable filter cartridge, spin/screen filter or disk filter that is flushable before prior to discharge into the drip distribution tubing network.

6. Effluent filters are required to:

 a. Be automatically backflushed to flush the solids off the filter surface and return them to the inlet pipe of the septic tank.

 b. Be inspected periodically and hand cleaned if necessary.

76. A minimum of two vacuum relief valves are required per zone.

 a. The valves are located at the highest points on both the distribution and return manifolds.

 b. Vacuum relief valves are located in a valve box that is adequately drained and insulated to prevent freezing.

87. Pressure regulators and pressure compensating emitters should be used on sloped installations.

98. Pressure should be between 25 and 40 psi unless pressure compensating emitters are used.

9. The hydraulic design of the drip distribution system should achieve discharge rates and volumes that vary no more than ±10% between all the emitters within a zone during a complete dosing event.

 a. Consideration should be given to the unequal distribution during flow pressurizing and depressurizing periods.

 b. The designer must be able to mathematically support the design for equal distribution.
Dosing requirements in all drip distribution systems include:

- Timed dosing is required.
- Dosing will only occur when there is sufficient volume in the dosing chamber to deliver a full design dose to the drip distribution system.
- Sufficient rest time shall be programmed to provide time for effluent to distribute away from the drip lines.
- Shall include a flow meter or run time/event counter.
- The capability to monitor flow rates both during dosing and flushing events.
- Small, frequent doses should be avoided and dose volumes should be several times the total supply and return manifold and drip tubing volumes within the dosing zone.

Dosing chambers shall:

- Provide sufficient storage for equalization of peak flows.
- Hold one day’s flow above the pump-enable water level regardless of whether a single or duplex pump system is installed.
- The high-level alarm should be located so that there is storage for at least one quarter of a day’s flow above the alarm.

Each valve, filter, pressure regulator, and any other nondrip tube or piping component is required to be accessible from grade and should be insulated to prevent freezing.

4.5.3.2 Additional Design Requirements for Septic Tank Effluent Drip Distribution Systems

Septic tank effluent drip distribution systems are systems that discharge filtered effluent that has only passed through an appropriately sized septic tank, dosing chamber, and 100 micron filter prior to entering the drip distribution tubing. The following additional minimum design elements apply only to septic tank effluent drip distribution systems:

1. Soil application rates used for system design shall meet the rates provided in Table 2-9.
2. Effective soil depth to limiting layers below the drip tubes shall meet the minimum depths specified in IDAPA 58.01.03.008.02.c (Section 8.1) for daily design flows < 2,500 gallons per day (GPD) or IDAPA 58.01.03.013.04.c (Section 8.1) for daily design flows ≥ 2,500 GPD.
3. Application areas up to 1 square foot per foot (ft²/ft) of drip distribution line may be used, application area is equivalent to drip tube spacing used in the system design.
4. Drip distribution tubes may be placed on a maximum of 1-foot centers.
5. Emitter spacing may be a maximum of 12 inches.
6. Emitter flow rate shall be ≤ 0.6 gallons per hour (GPH).
7. Filters should be flushed at the start of each dosing cycle and zones should be flushed every 20-50 dosing cycles.

4.5.3.3 Additional Design Requirements for Pretreated Effluent Drip Distribution Systems

Pretreated effluent drip distribution systems are systems that discharge filtered effluent that has passed through an appropriately sized septic tank, pretreatment system, dosing chamber, and 100 micron filter prior to entering the drip tubing. The following additional minimum design elements apply only to pretreated effluent drip distribution systems:

1. Soil application rates used for system design shall meet the rates provided in Table 2-9.
2. Effective soil depth to limiting layers below the drip tubes shall meet the minimum depths specified in section 4.21.5, Table 4-20.
3. Application areas up to 2 ft²/ft of drip distribution line may be used.
4. Drip distribution tubes may be placed on a minimum of 2-foot centers.
5. Emitter spacing may be a maximum of 24 inches.
6. Emitter flow rate shall be ≤ 1.0 GPH.
7. Filters should be flushed at least once per day and zones should be flushed every two weeks.

4.5.3.4 Additional Design Requirements for Noncontinuous Flush Drip Distribution Systems

The following additional minimum design elements apply only to noncontinuous flush drip distribution systems:

1. In noncontinuous flush systems, drip distribution laterals are flushed at least once every 2 weeks at regular intervals to prevent biofilm and solids buildup in the tubing network.

 a. Minimum flushing velocity is based on the tubing manufacturer’s recommendations for the return ends of the distribution lines and in the drip irrigation-distribution tubing during field flush cycles, must be high enough to scour the drip distribution tubing, and is recommended to exceed the manufacturer’s recommended velocity.

 b. The minimum flushing duration is long enough to fill all lines and achieve several pipe volume changes in each lateral.
2. In noncontinuous flush systems, the return manifold is required to drain back to the septic tank.
3. In noncontinuous flush systems, timed or event-counted backflushing of the filter is required.
4. In noncontinuous flush systems, filters, flush valves, and a pressure gauge may be placed in a head works (between the dose pump and drip field).
4.5.3.5 Additional Design Requirements for Continuous Flush Drip Distribution Systems

The following additional minimum design elements apply only to continuous flush drip distribution systems:

1. Filter must be a flushing type.
 a. The filter is required to be backwashed according to the manufacturer’s recommendations, and the process must be automated unless the automated backwashing requirement has been waived.
 b. The automated backwashing requirement may be waived if the filter is configured with an alarm to indicate when velocity is reduced below the manufacturer’s minimum recommended flow velocity.

2. Drip distribution laterals are flushed during the dosing cycle.
 a. The continuous flush system must be designed to the manufacturer’s minimum recommended flow velocity, must be high enough to scour the drip distribution tubing, and is recommended to exceed the manufacturer’s recommended velocity.
 b. The dose duration must be long enough to achieve several pipe volume changes in each drip tubing lateral to adequately accomplish flushing the drip tubing lines.

3. Filters and pressure gauges may be placed in a head works (between the dose tank and drip distribution field), and supply and return pressure gauges are needed to ensure that the field pressurization is within the required range specified by the drip tube manufacturer.

4. In continuous flush systems, both supply and return manifolds are required to drain back to the dose septic tank.

5. Due to the nature of the continuous flush process, the filter shall be examined after initial start-up and cleaned if necessary to prevent incorrect rate of low readings for the controller.

6. The drip distribution system will operate to the manufacturer’s minimum recommended flow velocity for the duration of each cycle, and the total flow minus the emitter uptake flow would be the return and flushing flow.

4.5.4 Construction

1. No wet weather installation is allowed.

2. Excavation and grading must be completed before installing the subsurface drip distribution system.

3. Drip distribution tubing may be installed using a trencher, static plow, or vibratory plow.
 a. Care must be taken when using a trencher to ensure the tubing is in contact with the trench bottom and does not have many high and low points in the line.
 b. Trenchers may limit the potential for smearing in clay soils.
 c. When using a static or vibratory plow care must be taken to ensure the drip distribution tubing does not snag and stretch when unrolling.
d. Use of a gage wheel with a static plow will assist in installing tubing to grade on level sites.

e. Vibratory plows allow for minimal site disturbance and may be best for cutting through roots in the soil.

4. Drip distribution systems may not be installed in unsettled fill material.

5. No construction activity or heavy equipment may be operated on the drainfield-drip distribution area other than the minimum to install the drip distribution system.

6. Do not park or store materials on the drainfield-drip distribution area.

7. For freezing conditions, the bottom drip distribution line must be higher than the supply and return line elevation at the dosing tank chamber.

8. All PVC pipe and fittings shall be PVC schedule 40 type 1 or higher rated for pressure applications.

9. Flexible PVC pipe should be used for connecting individual drip lines together when making turns in laterals.

10. All glued joints shall be cleaned and primed with purple (dyed) PVC primer before being glued.

11. All cutting of PVC pipe, flexible PVC, or drip tubing should be completed using pipe cutters.

12. Sawing PVC, flexible PVC, or drip distribution tubing is allowed only if followed by cleaning off any residual burs from the tubing or pipe and removing all shavings retained in the tubing or pipe.

13. All open PVC pipes, flexible PVC, or drip distribution tubing in the work area shall have the ends covered during storage and construction to prevent construction debris and insects from entering the tubing or pipe.

14. Prior to gluing, all glue joints and tube or pipe interior shall be inspected and cleared of construction or foreign debris.

15. Dig the return manifold ditch trench along a line marked on the ground and back to the dosing tank chamber.
 a. The return manifold ditch trench should start at the farthest end of the manifold from the dosing tank chamber.
 b. The return manifold must slope back to the dosing tank chamber.

16. Prior to start-up of the drip distribution system, the air release valves shall be removed and each zone in the system shall be flushed as follows:
 a. System flushing is accomplished by the manufacturer or engineer using the control panel’s manual override.
 b. Use ing an appropriate length of flexible PVC pipe with a male fitting and attach it to the air release connection to direct the flushing water away from the construction and drip distribution system area.
c. Flush the each zone with a volume of clean water (clean water to be provided by contractor) equal to at least two times the volume of all piping, and tubing from the central unit dosing chamber to the air release valve within the zone being flushed or the equivalent of 5 minutes of flushing.

d. Repeat this procedure for each zone.

Note: filters are not backflushed during start-up as any clogging could cause incorrect rate of flow readings for the controller.

If existing septic tanks or dosing chambers are to be used, they shall be pumped out by a permitted septic tank pumper, checked for structural or component problems, and repaired or replaced if necessary.

a. After the a tank is emptied, the tank shall be rinsed with clean water, pumped again, refilled with clean water, and leak tested.

b. Debris in the septic any tank should be kept to a minimum because it could may clog the filters during start-up.

Once completed, cap drainfield the drip distribution areas for shallow installations (less than 12 inches) with 6–8 inches of clean soil and suitably vegetate.

a. Cap fill material shall be the same as or one soil group finer than that of the site material, except that no fill material finer than clay loam may be used.

b. Cap fill shall be free of debris, stones, frozen clods, or ice.

c. The cap should be crowned to promote drainage of rainfall or runoff away from the drip field.

d. Suitable vegetation should consist of typical lawn grasses or other appropriate low-profile vegetation that will provide thermal insulation in cold climates.

de. Trees, shrubs, and any other vegetation that aggressively seeks water should not be planted within 50 feet of the drip tubing network.

19. Development of a diversion berm around the drip distribution field site will aid in the diversion of runoff around the system.

4.5.5 Inspection

1. A preconstruction meeting between the health district, responsible charge engineer, and installer should occur prior to commencing any construction activities.

2. The health district shall inspect all components and fill material used in constructing the drip distribution system prior to backfilling or cap fill placement.

3. The responsible charge engineer should conduct as many inspections as necessary to verify system and component compliance with the engineered plans.

4. The responsible charge engineer shall provide the health district with a written statement that the system was constructed and functions in compliance with the approved plans and specifications. Additionally, the responsible charge engineer shall provide as-built plans...
to the health district if any construction deviations occur from the permitted construction plans. (IDAPA 58.01.03.005.15)

4.5.6 Operation and Maintenance

1. The drip distribution system design engineer shall provide a copy of the system’s operation, maintenance, and monitoring procedures to the health district as part of the permit application and prior to subsurface sewage disposal permit issuance (IDAPA 58.01.03.005.04.k).

2. Minimum operation, maintenance, and monitoring requirements should follow each system component manufacturer’s recommendations.

a. Monitoring should be based on the most limiting process in the system design.

b. Regular monitoring of flow rates and pressures should be specified to diagnose possible overuse.

3. Additional operation, maintenance, and monitoring may be required for the pretreatment component of the drip distribution system.

a. The minimum operation, maintenance, and monitoring of the pretreatment component will be based on the manufacturer’s recommendations and the minimum requirements specified within this manual for the specific pretreatment system.

b. Additional operation, maintenance, and monitoring may be based on specific site conditions or pretreatment component type.

4.5.7 Suggested Design Example

1. Determine square feet needed for the drip distribution system, as follows.

a. Wastewater flow in GPD is divided by the soil application rate (based on the soil classification from an on-site evaluation).

b. Result is the square feet (ft²) needed for the system.

Example conditions: three-bedroom home discharging pretreated effluent in subgroup C-2 soils.

Example calculation: (250 GPD)/(0.2 gallons/ft²) = 1,250 ft²

2. System design will use an application area of 2 ft²/ft of drip distribution tube. Divide the required square feet by the drip distribution tube application area (2 ft²/ft). This will determine the length of drip distribution tube needed for the system.

Example: (1,250 ft²)/(2 ft²/ft) = 625 feet of drip tube

3. Determine pumping rate by finding the total number of emitters and multiplying by the flow rate per emitter (1.32-0.9 gallons/hour/emitter at 20 psi). Adjust output to GPM and add 1.5 GPM per connection for flushing to achieve, for example, a 2 feet/second flushing velocity.

 Note: For continuous flush systems, the number of emitters will vary depending on the product selected.
Example: \[
(625 \text{ feet})/(2 \text{ feet/emitter}) = 312.5, \text{ use 313 emitters}
\]
\[
(313 \text{ emitters}) \times (4.320.9 \text{ gallons/hour/emitter}) = 443.2-281.7 \text{ gallons/hour}
\]
\[
(413.2-281.7 \text{ gallons/hour})/(60 \text{ minutes/hour}) = 6.894.695 \text{ GPM}, \text{ or 7.5 GPM}
\]

10 connections at 1.5 GPM per connection = 15 GPM

Pumping rate: \textbf{7.5 GPM} + 15 GPM = \textbf{220 GPM}

4. Determine feet of head. Multiply the system design pressure (20 psi \textit{for this example is standard, but values can vary depending on the drip distribution tube used}) by 2.31 feet/psi to get \textit{the} head required to pump against.

Example: \[
(20 \text{ psi}) \times (2.31 \text{ feet/psi}) = 46.2 \text{ feet of head}
\]

Add in the frictional head loss from \textit{the drip distribution} tubing and piping.

5. Select a pump. Determine the size of the pump based on gallons per minute (step 3 of suggested design example) and total head (step 4 of suggested design example) needed to deliver a dose to the system. The pump selected for this example must achieve a minimum of \textbf{220 GPM} plus the flush volume at 46.2 feet of head.

Figure 4-7 shows an overhead view of a typical drip distribution system. Figure 4-8 shows a potential layout of a filter, valve, and meter assembly, and Figure 4-9 illustrates a cross-sectional view of the filter, valve, and meter assembly. Figure 4-10 provides a view of the continuous flush system filter and meter assembly.
Figure 4-7. Overhead view of typical drip distribution system.
Valve Box Examples

Figure 4-8. Overhead view of filter, valve, and meter assembly.

Valve Box

Figure 4-9. Cross-sectional view of typical filter, valve, and meter assembly.
Figure 4-10. Overhead view of continuous flush system filter and meter assembly.