City of Chubbuck Drinking Water Upgrade Project
SRF Loan #DW1602 (pop. 14,125)
$8,500,000

Interim Green Project Reserve Justification

Categorical GPR Documentation

1. **NEW BOOSTER PUMP STATION WITH PREMIUM ENERGY-EFFICIENT PUMPS AND VFDs (Energy Efficiency).** Categorical per GPR 3.2-2: *projects that achieve a 20% reduction in energy consumption; if a project achieves less than a 20% reduction in energy efficiency, then it may be justified using a business case;* also, per 3.5-9: *VFDs can be justified based upon substantial energy savings ($210,000).*

2. **INSTALLS NEW WATER TRANSMISSION PIPING (Water Efficiency).** Business Case GPR per 2.4-3: *Efficient water use...reducing the amount of energy required by a drinking water system...therefore, there are also energy and financial savings;* also (Energy Efficiency) Business Case GPR per 3.5-1: *Energy efficient...upgrades;* and, per 3.5-5: *Projects that achieve the remaining increments of energy efficiency. ($261,032).*

Prepared by the State of Idaho SRF Loan Program
April 2017
1. **PREMIUM PUMPS AND VFDs**

Summary
- As part of the upgrade project, the City of Chubbuck will construct a new booster pump station with pumps equipped with premium energy-efficient motors and VFDs.
- Total Loan amount = $8,500,000
- Estimated energy efficient (green) portion of loan = 2.4% ($210,000) (design cost estimate)

Background
- The City of Chubbuck water system has four active water supply wells, three storage tanks, one booster pump station, and over 70 miles of distribution system piping ranging in size from 4 inch to 24 inch in diameter.
- The Water System requires increased water production capacity and increased storage capacity to address both immediate and future projected deficiencies.
- A new booster pump station will be equipped with three (3) vertical turbine pumps with premium energy-efficient 125 hp motors with VFDs.

GPR Justification

Motors/VFDs:
The Baseline Standard Practice for comparison is a standard Epact motor that is not controlled by a VFD.

Published operating curves by the pump manufacturer provided VFD efficiency data:

- **Proposed Pumps - no VFD, standard Epact efficiency motor**
 - Type: Vertical Turbine Hollow Shaft
 - Efficiency 82%; Flow 1,400 gpm; 2.02 mgd; Head 265 ft.
 - Motor rating = 125 hp; Motor type = standard efficiency (93.0% assumed at 75% of full load)
 - BHP, existing avg. flow = 115 hp
 - % operation = 33% (average day flow/pump output)
 - % Annual Usage = 50% (average daily operation throughout the year)
 - Energy usage = 125,078 kW-hr

- **Proposed Pumps - no VFD, with premium efficiency motor**
 - (95.4% assumed at 75% of full load)
 - BHP, existing avg. flow = 112.24 hp
 - % operation = 33% (average day flow/pump output)
 - % Annual Usage = 50% (average daily operation throughout the year)
 - Energy usage = 122,076 kW-hr

- **Proposed Pumps - VFD operation with premium efficiency motor**
 - Type Hollow Shaft Vertical Turbine
 - Efficiency 82%; Head 230 ft;
 - Motor rating = 125 hp; Motor type = standard efficiency (95.4% assumed at 75% of full load)
 - BHP, existing avg flow = 90.75 hp
 - % operation = 33% (average day flow/pump output)
 - % Annual Usage = 50% (average daily operation throughout the year)
 - Energy usage 98,703 kW-hr

PREMIUM PUMPS AND VFDs (CON’T)

- **Energy Reduction - comparing with VFD to without VFD**
 - Energy usage, w/o VFD 122,076 kW-hr
 - Energy usage, w/ VFD 98,703 kW-hr
- The premium motors with VFDs result in a 21.1% energy reduction compared to non-VFD, standard efficiency motors

Conclusion

- The combined annual energy savings for utilizing premium pumps and VFDs is estimated to be 26,375 kWh/year per motor/VFD system - corresponding to an energy reduction of 21.1% when compared to the Baseline Standard Practice.
- The premium energy-efficient pumps/VFDs are categorically GPR eligible as they achieve greater than 20% reduction in energy consumption.
- **GRP Costs Identified:**
 - Booster Station VFDs (3 @ $15,000 ea. = $45,000) + Pumps & Motors (3 @ $55,000 = $165,000) = Total = $210,000
- **GRP Justification:**
 - The Pump/VFD system is Categorically GPR eligible (Energy Efficiency) per Section 3.2-2 page 9: *Projects that achieve a 20% reduction in energy consumption are categorically eligible for GPR; also, per 3.5-9: VFDs can be justified based upon substantial energy savings.*

4 Attachment 2. April 21, 2010 EPA Guidance for Determining Project Eligibility
2. New Water Transmission Line

Summary
- New 18-inch and 16-inch diameter transmission line consisting of 6,800 feet of ductile iron pipe will be installed to increase system reliability, and to reduce energy requirements.
- Loan amount = $8,500,000
- Energy saving (green) portion of loan = 3.1% ($261,032) (design cost estimate)

Background
- The water system is experiencing fluctuating high pressure events due to a lack of transmission capacity.
- As part of a water loss management plan, various distribution alternatives were evaluated to identify potential pipeline rehabilitation/replacement projects. A priority alternative selected was the provision of new transmission lines. This project will install 6,800 feet of 18-inch and 16-inch pipe.

Energy Savings
- By installing 6,800 feet of new transmission line, the City anticipates conserving energy.
- The WaterCAD model was used to calculate the cost per MG for a well based on discharge pressures, suction pressures, and flow. Because modified pump curves (to reflect both the drawdown and pump curve) are used, only the difference in cost per MG for the booster station is compared. Costs were calculated assuming $0.08/kWh.
- Due to the new transmission line, an average estimated energy savings of approximately 16.7% is anticipated (150 to 125 hp booster pumps).
- For the period an estimated annual combined cost savings of at least $6,526 would be realized by the 3 booster pumps. Over a 40-year period, this savings would amount to approximately $261,032.

Conclusion
- Energy cost savings of at least $261,032 will be realized over the 40-year life of the new transmission line.
- Additional benefits include reductions in unnecessary pumping and operation and maintenance expenditures.
- **GPR Costs**: 6,800-foot transmission line = $930,000; GPR-eligible costs = $261,032
- **GPR Justification**: The project is Business Case GPR-eligible (Water Efficient) per 2.4-3: Efficient water use...reducing the amount of energy required by a drinking water system...therefore, there are also energy and financial savings; also (Energy Efficiency) Business Case GPR per 3.5-1: Energy efficient...upgrades; and, per 3.5-5: Projects that achieve the remaining increments of energy efficiency.